Summary
The paper by Gurari et al. discusses the segmentation of images and when segmentation should be done by humans and when is a machine only approach applicable. The work described in this paper is interdisciplinary, involving computer vision and human computation. They have considered both fine-grained as well as coarse-grained segmentation approaches to determine where the human or the machine perform better. The PTP framework describes whether to pull the plug on humans or machines. The framework aims to predict if the labeling of images should come from humans or machines and the quality of the labeled image. Their prediction framework is a regression model that captures the segmentation quality. The training data was populated with masks to reflect the quality of the segmentation. The three algorithms used are Hough transform with circles, Otsu thresholding, and adaptive thresholding. For labels, the Jacquard index was considered to indicate the quality of each instance. Nine features were proposed derived from the binary segmentation mask to catch the failure. It was finally derived that a mixed approach performed better than completely relying on humans or computers.
Reflection
The use of machines vs. humans is a complex debate. Leveraging both machine and human capabilities is necessary for efficiency and dealing with “big data.” The paper aims to find when to use computers to create coarse-grained segments and when to replace with humans for fine-grained data. I liked that the authors published the code. This helps in the advancement of research and reproducibility.
The authors have used three datasets but all based on images. In my opinion, detecting images is a relatively simple task to identify bounding boxes. I work with texts, and I have observed that segmentation results of large amounts of text are not simple. Most of the available tools fail to segment long documents like ETDs effectively. Nonetheless, segmentation is an important task, and I am intrigued to see how this work can be extended to text.
Using crowd workers can be tricky. Although Amazon Mechanical Turk allows requesters to specify the experience, quality, etc. of workers, however, the time taken by a worker can vary depending on various factors. Would humans familiar with the dataset or the domain annotate faster? This needs to be thought of well, in my opinion, especially when we are trying to compete against machines. Machines are faster and good at handling vast amounts of data whereas; humans are good at accuracy. This paper highlights the old problem of accuracy vs. speed.
Questions
- The segmentation has been done on datasets with images. How does this extend to text?
- Would experts on the topic or people familiar with databases require less time to annotate?
- Although three datasets have been used, I wonder if the domain matters? Would complex images affect the accuracy of machines?