The popularity of social media has increased exponentially over the past few decades and with this comes a wave of image content that is flooding social media. Amidst this growing popularity, people who are blind or visually impaired (BIV) often find it extremely difficult to understand such content. Although existing solutions offer limited capabilities to caption images and provide alternative text, these are often insufficient and have a negative impact on the experience of BIV users if inaccurate. This paper aims to provide a better platform to improve the experience of BIV users by combining crowd input with existing automated captioning approaches. As part of the experiments, numerous workflows with varying degrees of human involvement and automated systems involvement were designed and evaluated. The four frameworks that were introduced as part of this study include a fully-automated captioning workflow, a human-corrected captioning workflow, a conversational assistant workflow, and a structured Q&A workflow. It was observed that though the workflows involving humans in the loop was time-consuming, it increased the user’s satisfaction by providing accurate descriptions of the images.
Throughout the paper, I really liked the focus on improving the experience of blind or visually impaired users while using social media and ensuring that accurate image description is provided so that the BIV users understand the context. The paper explores innovative means of leveraging humans in the loop to solve this pervasive issue.
Also, the particular platform being targeted here is social media which comes with its own challenges. Social media is a setting where the context and emotions of the images are as important as the image description itself to provide the BIV users sufficient information to understand the post. Another aspect that I found interesting was the focus on scalability which is extremely important in a social media setting.
I found the concepts of TweetTalk conversational workflow and the Structured Q&A workflow interesting as they proved a mixed approach by involving humans in the loop whenever necessary. The intent of the conversational workflow is to understand the aspects that make a caption valuable to a BIV user. I felt that this fundamental understanding is extremely essential to build further systems that ensure user satisfaction.
It was good to see that the sample tweets were chosen based on broad areas of topics that represented the various interests reported by blind users. An interesting insight that came out of the study was that no captions were preferred to inaccurate captions to avoid the cost of recovery from misinterpretation based on an inaccurate caption.
- Despite being validated by 7 BIV people, the study largely involved simulating a BIV user’s behavior. Do the observations hold good for scenarios with actual BIV users or is the problem not captured via these simulations?
- Apart from the two new workflows used in this paper, what are some other techniques that can be used to improve the captioning of the images on social media that captures the essence of the post?
- Besides social media, what other applications or platforms have similar drawbacks from the perspective of BIV users? Can the workflows that were introduced in this paper be used to solve those problems as well?