03/04/2020- Myles Frantz – Combining crowdsourcing and Google Street View to identify street-level accessibility problems

Summation

Taxes in the US are a very divisive topic, and unfortunately, system infrastructures such as road maintenance are left to take the impact. Due to the lack of resources generally allocated, states typically only allocated the necessary amount of resources to fix problems, while generally leaving out accessibility options. This team from the University of Maryland has taken it upon themselves to prototype identification of these lack of accessibility options via crowd sourcing. They developed a system that utilized information from Google Street View and users could identify problems with the road. The next users could also confirm or deny the previous conclusions from previous users. Throughout this, they ran this experiment using 229 images manually collected through Google Street View and once with 3 handicap users, then with 185 various mechanical turkers. Throughout this, they were able to achieve an accuracy of at least 78% compared to the ground truth. Further trimming down the lower ranking turkers raised the accuracy by about 6% at the cost of filtering out 52% of the turkers.

Response

I can appreciate this approach since I believe (as was also stated in the paper) that a manual effort to identify the accessibility problems would cost a lot of money and time. Both of those requirements are typically sticking and stringent points from government contracts. Though they may not be ready to open this kind of availability to crowd workers, the accuracy is creating a stronger argument. Further ensuring better workers, the study also proved that by dropping the number of raw workers available for better results was ultimately fruitful, and potentially may be in alignment with the type of budget the government could provide.

Questions

  • Manually creating ground truth from experts would likely be unsustainable, since the cost in that specific requirement would increase. Since I don’t believe you can require a kind of accessibility handicap in Amazon Mechanical Turk, if this kind of work was solely based on Mechanical (or other crowdsourcing tools), would the ground truth ultimately suffer due to the potential lack of experience and expertise?
  • This may be an external perspective; however, it seems there is a definitive split of ideas within the paper, creating a system for crowd workers to identify and then creating a system to optimize the potential crowd workers working on the project. Do you think both ideas were equally weighed and spread throughout the paper or the Google Street View system was a means of utilizing the techniques for optimizing the crowd workers?
  • Since these images (solely utilizing Google Street View) are likely only taken periodically (due to resource constraints of the Google Street View Cars), the images are highly likely to be older and under change from any recent construction. When there is a delay from the Google Street View pictures, structures and buildings may have changed without getting updated in the system. Do you think there might be enough changes in the streets that the turkers work would become obsolete?

One thought on “03/04/2020- Myles Frantz – Combining crowdsourcing and Google Street View to identify street-level accessibility problems

  1. In response to your first question, I think that the ground truth would initially suffer. But, I think that we could get around that. There have been many examples of MTurk workers doing things that were previously only thought to be able to be done by experts. Another one of this week’s papers talks about how we can use MTurk workers to transcribe audio in real time. This is something that, previously, could only be done by experts. I think that we just need to be more creative about how we break up the problems for the crowd workers. We could try having more people takes guesses on images and more people double checking images. I think that it all depends on how we give tasks to crowd workers. If we do it right, we should be able to solve this problem and many others.

Leave a Reply