
Computing the Umbrella Neighbourhood of a Vertex in the Delaunay Triangulation
and a Single Voronoi Cell in Arbitrary Dimension

Tyler H. Chang∗, Layne T. Watson∗†‡, Thomas C. H. Lux∗, Sharath Raghvendra∗,
Bo Li∗, Li Xu§, Ali R. Butt∗, Kirk W. Cameron∗, and Yili Hong§

∗Dept. of Computer Science
†Dept. of Mathematics

‡Dept. of Aerospace and Ocean Engineering
§Dept. of Statistics

Virginia Polytechnic Institute and State University
Blacksburg, Virginia, 24061

Email: thchang@vt.edu

Abstract—Delaunay triangulations and their geometric dual
Voronoi diagrams are carefully studied topics in computational
geometry and have numerous applications spanning fields such
as physics, engineering, geographic information systems, and
computer graphics. There are numerous efficient algorithms
for computing both in two and three dimensional real space,
but for higher dimensional space, the computational complexity
grows exponentially. For many applications, it is only necessary
to compute the star of simplices incident to (often called the
umbrella neighbourhood of) a single vertex of the Delaunay
triangulation, or equivalently, the Voronoi cell of a point. In
practice, this may be a relatively small subset of the total
Delaunay triangulation or Voronoi diagram. In this paper, an
algorithm is proposed for computing the umbrella neighbour-
hood of a single vertex in the Delaunay triangulation.

1. Introduction

Delaunay triangulations and Voronoi diagrams are fun-
damental constructs from computational geometry. Both
are widely used for mesh generation, interpolation, and
topological shape approximation, in fields such as physics,
engineering, geographic information systems, and computer
graphics. They are also geometric duals of each other, and
therefore an algorithm that computes either one is easily
extended to compute the other.

A d-dimensional tessellation of a convex region X ⊆ Rd
is a division of X into closed (typically convex) sets called
cells that are disjoint except along shared boundaries and
whose union is X . Given a set of points P ⊂ Rd, a d-
dimensional triangulation is a tessellation of the convex hull
of P , denoted CH(P), where each cell is a d-simplex with
vertices in P . The Voronoi diagram (also called the Dirichlet
tessellation) of a finite set of points P ⊂ Rd is a specific
tessellation of the entire space Rd, derived from the nearest
neighbor relationship on P . The Delaunay triangulation is

then a specific triangulation of P derived from the Voronoi
diagram.

In two dimensions, there are numerous efficient methods
for computing both Voronoi diagrams [1] and Delaunay
triangulations [2]. However, in higher-dimensional spaces,
the computational complexity has been shown to grow ex-
ponentially [3]. In order to save on computational time and
space complexity, this paper considers applications where
only a small number of cells from the Voronoi diagram or a
small subset of the Delaunay triangulation (specifically the
umbrella neighbourhood of a point) is needed.

The paper will proceed as follows. Section 2 provides
relevant definitions and a short summary of related work
and challenges. Section 3 contains a detailed description of
the operations performed in the proposed algorithm, and the
necessary data structures. Section 4 introduces the proposed
algorithm along with an analysis of its time and space
complexity. Section 5 briefly mentions several degeneracy
and numerical stability issues that could arise and how they
could be addressed. Section 6 briefly describes a Fortran
implementation of the algorithm and presents an empirical
analysis of its run time. Section 7 concludes this paper and
outlines future work.

2. Background

2.1. Definitions

The Voronoi diagram of a finite set of points P ⊂ Rd
is defined in terms of a nearest neighbor relationship using
the Euclidean distance metric.

Definition 1. The Voronoi diagram V D(P) of a set of n
points P = {p1, . . ., pn} ⊂ Rd is the unique tessellation of
Rd into n cells V D(P) = {V1, . . ., Vn} such that for all
Vi ∈ V D(P) and x ∈ Rd, x ∈ Vi if and only if ‖pi−x‖2 ≤
‖pj − x‖2 for all j 6= i.

978-1-5386-6133-8/18/$31.00 c© 2018 IEEE

Notice that any point x on the boundary between k
adjacent Voronoi cells Vi1 , . . ., Vik (where k ≥ 2) must
satisfy

‖pi1 − x‖2 = · · · = ‖pik − x‖2. (1)

So, the boundary between k adjacent Voronoi cells is the
solution space to a system of k− 1 linear equations. Unless
these equations are dependent (which occurs if and only if
all k points lie in some (k − 3)-sphere) the solution space
for a system of k − 1 linear equations is a (d − k + 1)-
dimensional linear manifold. Therefore, each Voronoi cell
is a d-polytope with vertices satisfying (1) for k ≥ d + 1
and points pi1 , . . ., pik .

Note that as described above, any k ≥ d + 1 points
defining a Voronoi vertex v must be some distance r from
v, and the open ball B(v, r) = {x | ‖x − v‖2 < r} must
satisfy B ∩ P = ∅. Furthermore, these k points must lie on
the topological boundary of B(v, r), which is the (d − 1)-
sphere C(v, r) = {x | ‖x− v‖2 = r}. Conversely, note that
any d+1 affinely independent points in Rd define a unique
(d−1)-sphere C(v, r) that passes through these points, and
if B(v, r) is empty, then v must be a Voronoi vertex.

The Delaunay triangulation is defined as the geometric
dual of the Voronoi diagram [4]. To obtain a Delaunay
triangulation from the Voronoi diagram of P , take the set
of d-simplices defined by the d + 1 closest points to each
Voronoi vertex (see Figure 1). By definition of a Voronoi
vertex, there will always be at least d+1 points equidistant
from each vertex. If there are more than d + 1 points
equidistant from one or more Voronoi vertices, then the
division of those points into two or more space-filling d-
simplices is arbitrary, and any Delaunay triangulation of P
is not unique.

-1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

6

Figure 1. The Voronoi diagram of a set of points P in R2 with the Delaunay
triangulation overlayed.

Recall that each Voronoi vertex v is the center of a (d−
1)-sphere C(v, r) through the d+1 or more points defining
v, such that B(v, r)∩P = ∅. This is often referred to as the
empty circumsphere property. Formalizing this property, the

following alternative definition of a Delaunay triangulation
is generally preferred. See Figure 2 for a visual.

Definition 2. A Delaunay triangulation DT (P) of a finite
set of points P ⊂ Rd is any triangulation of P such that
for each d-simplex S ∈ DT (P), the (d− 1)-sphere C(v, r)
circumscribing S satisfies B(v, r) ∩ P = ∅.

-2 -1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

6

Figure 2. The empty circumsphere property demonstrated in R2.

Note that if all p ∈ P are contained in some lower-
dimensional linear manifold (or equivalently, if CH(P) has
zero volume), then all Voronoi edges extend without bound,
and there are no Voronoi vertices. Therefore, DT (P) (and
in general, any full-dimensional triangulation of P) does not
exist. It should be noted that for any set of n points in Rd, if
n < d+1 then all of the points lie in a (n−1)-dimensional
linear manifold trivially and no triangulation can exist.

Except in degenerate cases, there will be exactly d +
1 points on every (d − 1)-sphere, and DT (P) is unique.
Generally, if n ≥ d + 1, it can be assumed that DT (P)
exists and is unique. Since the existence and uniqueness of
DT (P) is generally presumed, it is customary to reference
the Delaunay triangulation of a set of points. This can be
formalized with the following definition.

Definition 3. A set of points P in Rd is said to be in general
position if P does not lie in some (d−1)-dimensional linear
manifold, and if no d+2 points in P lie on the same (d−1)-
sphere.

Note that the circumcenter of every Delaunay simplex
is a Voronoi vertex and vice versa. Also, recall that v is
a Voronoi vertex if and only if the sphere C(v, r) passing
through the nearest d + 1 affinely independent points sat-
isfies B(v, r) ∩ P = ∅. This leads to the following useful
equivalence.

Observation 1. A set of d + 1 points s ⊆ P is the set of
vertices of a d-simplex S ∈ DT (P) (whose circumcenter is
a Voronoi vertex) if and only if s defines a (d − 1)-sphere
C(v, r) with B(v, r) ∩ P = ∅.

For a corollary, consider the “star” of simplices in
DT (P) that share some vertex p̂ ∈ P . This subset of
DT (P) is often called the umbrella neighbourhood of p̂.
From Observation 1, it follows that the set of circumcenters
for all the simplices in the umbrella neighbourhood of p̂ is
exactly the set of vertices of the Voronoi cell containing p̂.

2.2. Applications and Properties

The Voronoi diagram allows for rapid nearest neigh-
bor queries, among many other applications. The natural
neighbor interpolant is defined as a convex combination of
nearby Voronoi cells as described in [5], and this usage
is extended to define an entire finite element mesh in [6].
Voronoi diagrams have also been used in the context of
topological shape approximations for constructing skeletons
[7].

The Delaunay triangulation is most widely used to define
a piecewise linear interpolant and corresponding unstruc-
tured mesh [8]. It has been shown that the Delaunay inter-
polant and mesh are in many ways optimal with respect to
other simplex based interpolation schemes and meshes [9].
The Delaunay triangulation also sees wide use in topological
shape approximations as a means to compute α-shapes and
α-complexes [10].

It should be noted that while many applications require
knowledge of the entire Voronoi diagram or Delaunay trian-
gulation, many other applications can be achieved by com-
puting only a small number of Voronoi cells or the umbrella
neighbourhoods of relatively few points. For example, in
[11] the volumes of Voronoi cells are used to compute
the porosity in various regions of a pebble-bed nuclear
reactor. In the context of multiobjective optimization, the
Delaunay umbrella neighbourhood of each point is used to
approximate the relative isolation of points on the pareto
front [12].

2.3. Related Work and Limitations

Efficient solutions exist for computing both Voronoi
diagrams [1] and Delaunay triangulations [2] in two-
dimensions, running in O(n log n). However, in Rd, the
worst case size of the Delaunay triangulation and total num-
ber of Voronoi vertices is known to be O(ndd/2e) [3]. Even
in the common case, the size of the Delaunay triangulation
and the number of Voronoi vertices still tend to increase
exponentially with the dimension.

Still, many efficient algorithms have been written for
computing both Delaunay triangulations and Voronoi di-
agrams in Rd. Some well known solutions include the
Bowyer-Watson algorithm [13], [14], the widely used
Quickhull [15], and a graph based approach [16] that at-
tempts to mitigate storage requirements at the expense of
computation time. It should be noted that although these
algorithms are extremely efficient, none of them are believed
to scale past eight dimensions for large data sets, due to the
exponential nature of the problem.

To avoid the curse of dimensionality, this paper consid-
ers the case described in Section 2.2, where only a small
number of Voronoi cells or umbrella neighbourhoods are
required for the particular application. To save time, one
could compute only the necessary subset, which may be
considerably smaller than the complete diagram or trian-
gulation. A similar approach has been taken before in the
C++ library Voro++ [17], which computes Voronoi cells
in three dimensions. However, the methodology in [17] is
fundamentally different than the algorithm proposed in this
paper, and was not extended to the arbitrary-dimensional
case in its implementation.

3. Necessary Operations

In this section, the machinery for computing the um-
brella neighbourhood of a vertex p̂ in the Delaunay trian-
gulation is developed. Recall that each Delaunay simplex
corresponds to exactly one Voronoi vertex. Therefore, the
Voronoi cell of the p̂ will follow trivially. There are two
operations that need to be defined and one data structure.
The two operations are the construction of an initial De-
launay simplex and the completion of an open Delaunay
facet. The data structure needed is the active facet list (AFL).
These operations and data structures are also established as
components in the construction of the complete Delaunay
triangulations via incremental construction and divide-and-
conquer paradigms in [18].

3.1. Growing a Delaunay Simplex

To begin, the following definition of a Delaunay face is
useful.

Definition 4. Let P be a set of points in Rd. Let F be a
k-face with vertices in P where 0 ≤ k ≤ d. Then F is a
Delaunay face if the smallest (radius) (d−1)-sphere C(v, r)
circumscribing F satisfies B(v, r) ∩ P = ∅.

Note that if k = d, then by Observation 1, F is a
Delaunay simplex. The following lemma shows how to grow
a complete Delaunay simplex from an arbitrary Delaunay
face.

Lemma 1. Let P be a set of points in Rd in general position,
and let F be a Delaunay k-face with vertices φ ⊂ P where
k < d. Let φ∗ = φ ∪ {p∗} where p∗ ∈ P \ φ minimizes
the radius of the smallest (d − 1)-sphere Cφ∪{p} through
the points in φ ∪ {p}, over all p ∈ P \ φ. Then F ∗, the
(k + 1)-face with vertices φ∗, is also a Delaunay face.

The proof of this lemma has been omitted, but follows
from a continuity argument. The key is to gradually deform
the initial sphere C0 that passes through φ by moving its
center toward the projection of the minimizing point p∗ on
the linear manifold M of points equidistant from φ, and
maintaining that the deformed sphere C∗ must still pass
through φ. Note that the radius of C∗ increases monotonely,
therefore by continuity, no point can “pass through” C∗ (and

into its open ball B∗) before p∗ is encountered, since p∗ was
chosen to minimize the radius of C∗.

The smallest (d− 1)-sphere containing a single point is
simply the point itself, whose open ball is the empty set.
Therefore, any point in P is a Delaunay 0-face trivially.
So, starting with an arbitrary point in P and applying the
following algorithm d times, the vertices of a full Delaunay
simplex S are found. The correctness of this approach
follows immediately from Lemma 1.

Algorithm 1, computes the vertices φ∗ ⊃ φ of a
Delaunay (k + 1)-face from the vertices φ of a Delaunay
k-face.

Let P be a set of n points p1, . . ., pn in Rd in general
position.
Let φ ⊂ P be the vertices of a Delaunay k-face where
k < d.
Let ri denote the minimum radius of a (d − 1)-sphere
containing φ and the point pi.

rmin :=∞;
for i := 1, . . ., n do

if ri < rmin and pi 6∈ φ then
p∗ := pi;
rmin := ri;

end if
end for
return φ∗ := φ ∪ {p∗};

3.2. Completing an Open Facet

Before presenting the algorithm for completing an open
facet, the following observation is helpful. A visual repre-
sentation of Observation 2 is presented in Figure 3.

Observation 2. Let DT (P) be the Delaunay triangulation
of a set of points P in Rd. Given a facet F of some simplex
S ∈ DT (P), let p1, . . ., pn be a sequence of points in P
and in a halfspace H with hyperplane boundary containing
F . Define the circumspheres C1, . . ., Cn with corresponding
open balls B1, . . ., Bn such that each Ck contains σ and
pk. Assume the sequence p1, . . ., pn satisfies pk ∈ Bk+1 for
all 1 ≤ k < n. Then B1 ∩H ⊂ B2 ∩H ⊂ · · · ⊂ Bn ∩H .

The proof of this observation has been omitted but
follows from another continuity argument, similar to that
of Lemma 1. Given Observation 2, the following algorithm
is proposed for completing an open facet of a Delaunay
simplex.

Algorithm 2, computes the set of vertices s of a De-
launay simplex in the halfspace H from the vertices σ of
a Delaunay facet F lying in the boundary hyperplane of
H .

Let P be a set of n points p1, . . ., pn in Rd in general
position.
Let σ be the vertices of a facet F of a Delaunay simplex.
Let H be a halfspace with hyperplane boundary contain-
ing F .

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3
p3

p2p1

F

H

p3

p2p1

F

H

p3

p2p1

F

H

Figure 3. A 2D visualization of Observation 2. The solid line segment is
a facet F , H is the halfspace above the dashed line, and {p1, p2, p3} is
a sequence satisfying p1 ∈ B2 and p2 ∈ B3.

Let PH = (P \ σ) ∩H .
Let Bi denote the open ball defined by the (d−1)-sphere
containing σ and pi.

B := H;
p∗ := p0; Note, p0 is a dummy vertex.
for i := 1, . . ., n do

if pi ∈ PH and pi ∈ B then
p∗ := pi;
B := Bi;

end if
end for
if p∗ = p0 then
σ must define a facet of CH(P)
return ∅;

else
return s := σ ∪ {p∗};

end if
The correctness of Algorithm 2 follows from Observa-

tion 2, which guarantees that the final point p∗ must satisfy
p∗ ∈ Bi for all pi 6= p∗.

3.3. The Active Face List

During the construction of the Delaunay umbrella neigh-
bourhood, it is often necessary to track which facets of the
working set of Delaunay simplices are “open” and which
are “closed.” Note that every facet of a simplex in any
triangulation that is not a facet of the convex hull is shared
between exactly two simplices in that triangulation. Given
a facet F , if only one simplex containing F has been
constructed thus far, then F is said to be “open” since it
still needs to be matched to a second simplex. If F is shared
between two simplices already, then F is said to be “closed”
since no other legal simplices can contain F .

The AFL is a data structure for storing the list of open
facets. The key idea is that whenever a new simplex S is

constructed, any facet of S that contains p̂ as a vertex either
closes a previously computed open facet from the umbrella
neighbourhood, or creates a new open facet that must be
closed in the future. Therefore, whenever the algorithm
constructs a new simplex S, any facet F of S that contains
p̂ should be used to update the AFL. If F is already in the
AFL, then the existing instance of F must be deleted from
the AFL since F has been closed by the new simplex S.
If F is not in the AFL, then it must be added since it is
an open facet. The update function is therefore outlined as
follows.

Algorithm 3, updates the AFL with a facet F of a
Delaunay simplex.

inputs: AFL A, Facet F
if F ∈ A then
A := A \ {F};

else
A := A ∪ {F};

end if
return
Note that in higher dimensions, the AFL could grow

exponentially large. Therefore, a more sophisticated struc-
ture than a static array is required for its implementation.
In this work, a dynamic array object that mimics the C++
Vector class is used. In particular, the AFL is initialized to
an array of length eight, then its length is doubled whenever
the size of the AFL overflows the current allocation. Note
that for optimal performance, a hash table structure has been
previously recommended to improve AFL query speed [18].

4. Algorithm Description and Analysis

4.1. Algorithm Description

In this section the computation of the Delaunay umbrella
neighbourhood of p̂ ∈ P ⊂ Rd, will be detailed. Using the
two operations outlined in Section 3 and the AFL structure,
it is possible to grow an initial Delaunay simplex from p̂ then
“fan out” to complete the entire umbrella neighbourhood of
p̂. In each iteration, a Delaunay simplex S incident to vertex
p̂ is created and every facet of S that contains p̂ as a vertex
must be used to “update” the AFL.

Algorithm 4 shows how to compute the Delaunay
umbrella neighbourhood of a point p̂. Alternatively, instead
of outputting the vertices of all the simplices in the umbrella
neighbourhood of p̂, one could compute the circumcenters
of these simplices to obtain the Voronoi cell containing p̂.

Algorithm 4, computes the Delaunay umbrella neigh-
bourhood of some p̂ ∈ P .

Let P be a set of n points in Rd in general position.
Let p̂ ∈ P .
Let A be an AFL.
Let MakeFirstSimplex(P , p̂) be a function that grows the
set of vertices of a Delaunay simplex starting from p̂, as
described in Algorithm 1.

Let CompleteSimplex(σ, P) be a function that completes
the open facet defined by the set of vertices σ with a
point from P that is on the open side of the hyperplane
containing σ; as described in Algorithm 2.
Let Update(σ, A) be a function that updates A using the
facet with vertices σ, as described in Algorithm 3.
Let DeleteFacet(σ, A) be a function that deletes the facet
with vertices σ from A.
Let GetFacet(A) be a function that returns the vertices σ
of some facet in A.

s := MakeFirstSimplex(P , p̂);
N := {s};
A := ∅;
for si ∈ s do

if si 6= p̂ then
σ := s \ {si};
Update(σ, A);

end if
end for

while A 6= ∅ do
σ := GetFacet(A);
s := CompleteSimplex(σ, P);
if s = ∅ then

The facet with vertices σ was a facet of CH(P)
DeleteFacet(σ, A);

else
for si ∈ s do

if si 6= p̂ then
σ := s \ {si};
Update(σ, A);

end if
end for
N := N ∪ {s};

end if
end while
return N ;
The correctness of Algorithm 4 follows from the correct-

ness of the operations in Sections 3.1 – 3.3. The simplices
constructed will always be Delaunay since Algorithms 1 and
2 are correct. Furthermore, since every open facet containing
p̂ as a vertex is “updated” in the AFL, the algorithm will
terminate only once every facet has been closed (or is a
facet of CH(P)). This ensures that all simplices incident to
p̂ are found, and since only finitely many simplices are in
the umbrella neighbourhood of p̂, the algorithm terminates
in finite time.

4.2. Time Complexity

The construction of the first simplex, as defined in Al-
gorithm 1, can be formulated as a sequence of least squares
(LS) problems ranging in size from 2 × d to d × d. Each
LS problem can be solved in O(d3) time. At all d − 1
sizes, one must solve up to n LS problems, taking the
point that produces the minimum residual as the next vertex.

Therefore, the total computation time for the first simplex
will be O(nd4).

To complete a facet requires at most n linear solves,
performed in O(nd3) total time. Therefore, the total time
complexity for constructing all simplices after the initial
simplex is given by O(nd3κ), where κ is the total number
of simplices in the Delaunay umbrella neighbourhood (or
equivalently, the number of Voronoi vertices). This makes
the total time complexityO(nd4+nd3κ). In general, κ could
be much greater than d, so this can be further reduced to
O(nd3κ). As seen in Section 6 (Table 2), for uniformly
distributed data, κ tends to scale with d independent of n,
making the total time complexity approximately linear in n.

4.3. Space Complexity

Recall from Section 2.3 that the size of the complete
Delaunay triangulation and Voronoi vertex list grows expo-
nentially with the dimension. Therefore, space complexity
is equally as concerning as time complexity since, for large
d, one cannot store the exponentially sized triangulation
in memory. Using Algorithm 4, the space required for
computing the umbrella neighbourhood is reduced to:

• The space required to store the entire umbrella
neighbourhood/Voronoi vertex list, which is propor-
tional to the number of simplices in the umbrella
neighbourhood and vertices of the Voronoi cell.

• The space required for the AFL, which is determined
by the maximum number of open facets.

As will be seen in Section 6 (Table 3), the maximum
space requirement of the AFL is significantly less than that
of the umbrella neighbourhood itself. Therefore, the space
requirement of this algorithm is limited only by the size
of the output (i.e., the number of simplices in the umbrella
neighbourhood), making this a space efficient technique.

5. Handling Degeneracy

5.1. The Challenges of Degeneracy

An important assumption that has been made up until
this point is that P is in general position. However, in
real world applications, it is possible that P could be some
degenerate point set (for example, consider a grid aligned
data set). There are two types of degeneracies to consider.

• P could be contained in some lower-dimensional
linear manifold.

• There could exist d+2 or more points in P that lie
on the same (d− 1)-sphere.

The situation where all points lie in a lower-dimensional
linear manifold will always result in a situation where no
new point can be “added” to the set of vertices during the
construction of the first Delaunay simplex without making
some face degenerate. This situation is easily detected via
a check for rank deficiency and need not be handled since

users can apply dimension reduction techniques to construct
an equivalent non degenerate problem.

In the case where more than d + 1 points lie on some
(d − 1)-sphere, one would like to still obtain the umbrella
neighbourhood of p̂ in a Delaunay triangulation, though it
will no longer be unique. However, the presence of the
degeneracy causes Algorithm 4 to break down, as it violates
the assumption that P is in general position.

To understand what could go wrong in Algorithm 4
under this kind of degeneracy, consider the two-dimensional
umbrella neighbourhood shown in Figure 4. Because there is
no unique triangulation, it is possible to identify conflicting
simplices, which are both members of a Delaunay triangu-
lation but cannot be members of the same triangulation.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

p1

p2 p3

p4

c

Figure 4. Consider this two-dimensional example, where the umbrella
neighbourhood of the central point c is being computed. Algorithm 4 has
been used to compute all the simplices shown, and in the current step it
has chosen the bold edge between c and p1 from the active facet list. If p3
is matched with this open facet, then the other open facet between c and
p3 will be closed and the algorithm terminates correctly. However, note
that due to the degeneracy (points c, p1, p2, and p3 are cocircular), p2 is
also a valid option. If p2 is chosen instead of p3, then the algorithm could
continue in an infinite loop, never properly matching all open facets.

Note that this failure to properly “match” facets is not
an issue in the case of an acyclic walk. However, properly
closing open facets is a key condition for the termination of
Algorithm 4. Therefore, in a fundamental way, Algorithm 4
is incompatible with degenerate data.

5.2. Dealing with Degeneracies

Since degeneracies occur with zero probability, a solu-
tion to the problems caused by degeneracy is to perturb each
p ∈ P by some small random vector of magnitude ε such
that the perturbed set ρ(P) = P +Qε is in general position
[19]. Note Algorithm 4 will succeed on the new point set
ρ(P), and the computed triangulation DT (ρ(P)) will be
within a perturbation of magnitude ε of the true triangulation
DT (P). Therefore, the computed triangulation DT (ρ(P))
could be used with the original point set P as a backward
stable estimate for DT (P).

The magnitude ε of the perturbations is important here. If
ε is chosen too large, the computed triangulation DT (ρ(P))
will not reflect the true triangulation DT (P). However, if ε
is chosen too small relative to the machine precision and
problem scale, then the effect of round off errors could
recreate the degeneracies. To simplify the issues, the point
set P should first be translated so that p̂ is centered at the
origin, then P should be scaled so that its diameter is 1.
Now, the value ε can be chosen strictly in relation to the
unit roundoff without accommodating scale. In practice, a
good choice for ε would be ε =

√
µ where µ is the unit

roundoff.

6. Empirical Results

A serial implementation of the proposed algorithm has
been coded in ISO Fortran 2003. This code was tested for
correctness against the standard implementation of Quick-
hull on pseudo random data sets ranging in dimension from
d = 2 to d = 5 and ranging in size from n = 20 to
n = 32, 000. Note that due to the exponential nature of
the problem, Quickhull becomes prohibitively slow for large
data sets in high-dimensional space. Where feasible, the
correctness was confirmed by ensuring that all computed
simplices were also members of the triangulation computed
by Quickhull. The following run times were gathered on
an Intel i7-3770 CPU @3.40 GHz running CentOS release
7.3.1611.

To gather the data seen in Tables 1, 2, and 3, the
umbrella neighbourhood was computed for the central point
in uniformly distributed point sets ranging in size from 2K
to 32K and ranging in dimension from two to five. At each
size and dimension combination, 20 independent trials were
performed over different point sets. Table 1 gives the average
observed runtimes at each size and dimension, Table 2 gives
the average number of simplices in the Delaunay umbrella
neighbourhood at each size and dimension, and Table 3
gives the average maximum size attained by the AFL at each
size and dimension. All input data sets consist of pseudo
randomly generated points in the unit hypercube, generated
using the Fortran intrinsic random number generator. Times
were recorded with the Fortran intrinsic CPU_TIME func-
tion, which is accurate up to either microsecond resolution
or the precision of the system clock.

Table 1. AVERAGE RUNTIME IN SECONDS FOR COMPUTING THE
UMBRELLA NEIGHBOURHOOD OF THE CENTRAL POINT FOR n

PSEUDO-RANDOMLY GENERATED INPUT POINTS IN d-DIMENSIONAL
SPACE.

n = 2K n = 8K n = 16K n = 32K
d = 2 0.1 s 1.6 s 6.3 s 25.0 s
d = 3 0.1 s 1.8 s 7.0 s 27.8 s
d = 4 0.2 s 2.0 s 7.6 s 30.0 s
d = 5 0.3 s 2.6 s 9.2 s 34.1 s

As seen, the proposed algorithm performs well, comput-
ing the umbrella neighbourhood relatively quickly. Note that
the maximum space requirement of the AFL is significantly
less than that of the umbrella neighbourhood, making this a

Table 2. AVERAGE NUMBER OF SIMPLICES IN THE UMBRELLA
NEIGHBOURHOOD OF THE CENTRAL POINT FOR n PSEUDO-RANDOMLY

GENERATED INPUT POINTS IN d-DIMENSIONAL SPACE.

n = 2K n = 8K n = 16K n = 32K
d = 2 6.30 5.90 6.25 6.65
d = 3 28.10 28.90 29.50 29.10
d = 4 151.90 170.55 173.60 161.00
d = 5 1122.90 1115.70 1111.00 1038.70

Table 3. AVERAGE MAX SIZE OF THE AFL WHILE COMPUTING THE
UMBRELLA NEIGHBOURHOOD OF THE CENTRAL POINT FOR n

PSEUDO-RANDOMLY GENERATED INPUT POINTS IN d-DIMENSIONAL
SPACE.

n = 2K n = 8K n = 16K n = 32K
d = 2 2 2 2 2
d = 3 11.85 12.30 12.55 12.15
d = 4 75.30 82.50 83.00 82.70
d = 5 658.05 643.05 642.55 610.65

space efficient solution. For comparison, consider the tables
in Section 5 of [16], which give statistics for the computation
of the complete Delaunay triangulation via state-of-the-art
methods.

7. Conclusion and Future Work

In this paper, a new algorithm is proposed for comput-
ing the Delaunay umbrella neighbourhood of a point, or
equivalently, a single Voronoi cell. The proposed algorithm
is empirically shown to scale efficiently. In future work, the
performance of the algorithm could be improved by imple-
menting the AFL as a hash table as recommended in [18].
Also, it would be interesting to compare its performance
with that of the Voro++ algorithm described in [17].

References

[1] S. Fortune, “A sweepline algorithm for voronoi diagrams,” Algorith-
mica, vol. 2, no. 1-4, p. 153, 1987.

[2] P. Su and R. L. S. Drysdale, “A comparison of sequential delaunay
triangulation algorithms,” in Proceedings of the eleventh annual sym-
posium on Computational geometry. ACM, 1995, pp. 61–70.

[3] V. Klee, “On the complexity of d-dimensional voronoi diagrams,”
Archiv der Mathematik, vol. 34, no. 1, pp. 75–80, 1980.

[4] M. de Berg, O. Cheong, M. Van Kreveld, and M. Overmars, Compu-
tational Geometry: Algorithms and Applications, 3rd ed. Springer-
Verlag Berlin Heidelberg, 2008.

[5] R. Sibson, “A vector identity for the dirichlet tessellation,” in Mathe-
matical Proceedings of the Cambridge Philosophical Society, vol. 87,
no. 1. Cambridge University Press, 1980, pp. 151–155.

[6] L. Traversoni, “Natural neighbour finite elements,” WIT Transactions
on Ecology and the Environment, vol. 8, 1970.

[7] J. W. Brandt and V. R. Algazi, “Continuous skeleton computation by
voronoi diagram,” CVGIP: Image understanding, vol. 55, no. 3, pp.
329–338, 1992.

[8] S.-W. Cheng, T. K. Dey, and J. Shewchuk, Delaunay Mesh Genera-
tion. CRC Press, 2012.

[9] V. Rajan, “Optimality of the delaunay triangulation in Rd,” Discrete
& Computational Geometry, vol. 12, no. 2, pp. 189–202, 1994.

[10] H. Edelsbrunner and E. P. Mücke, “Three-dimensional alpha shapes,”
ACM Transactions on Graphics (TOG), vol. 13, no. 1, pp. 43–72,
1994.

[11] C. H. Rycroft, G. S. Grest, J. W. Landry, and M. Z. Bazant, “Analysis
of granular flow in a pebble-bed nuclear reactor,” Physical review E,
vol. 74, no. 2, p. 021306, 2006.

[12] S. Deshpande, L. T. Watson, and R. A. Canfield, “Multiobjective opti-
mization using an adaptive weighting scheme,” Optimization Methods
and Software, vol. 31, no. 1, pp. 110–133, 2016.

[13] A. Bowyer, “Computing dirichlet tessellations,” The Computer Jour-
nal, vol. 24, no. 2, pp. 162–166, 1981.

[14] D. F. Watson, “Computing the n-dimensional delaunay tessella-
tion with application to voronoi polytopes,” The Computer Journal,
vol. 24, no. 2, pp. 167–172, 1981.

[15] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull
algorithm for convex hulls,” ACM Transactions on Mathematical
Software (TOMS), vol. 22, no. 4, pp. 469–483, 1996.

[16] J.-D. Boissonnat, O. Devillers, and S. Hornus, “Incremental construc-
tion of the delaunay triangulation and the delaunay graph in medium
dimension,” in Proceedings of the twenty-fifth annual symposium on
Computational geometry. ACM, 2009, pp. 208–216.

[17] C. H. Rycroft, “Voro++,” Lawrence Berkeley National Laboratory,
Tech. Rep., 2009.

[18] P. Cignoni, C. Montani, and R. Scopigno, “Dewall: A fast divide
& conquer delaunay triangulation algorithm in Ed,” Computer-Aided
Design, vol. 30, no. 5, pp. 333–341, 1998.

[19] H. Edelsbrunner and E. P. Mücke, “Simulation of simplicity: A
technique to cope with degenerate cases in geometric algorithms,”
ACM Transactions on Graphics (TOG), vol. 9, no. 1, pp. 66–104,
1990.

