
Modeling and Optimization

of Big Data Systems

Li Zhang

System Analysis & Optimization Group

IBM T. J. Watson Research Center

Collaborations with many colleagues, students at IBM and

many academic collaborators.

2

Big Data Systems
Characteristics of Big Data Systems

 Volume

 Variety

 Velocity

 Variability

 Veracity

 Complexity

Examples
 Storage: HDFS, GFS, …

 Processing: MapReduce, Spark, Hive, …

 NoSQL stores:
● Column: Cassandra, Hbase, …

● Document: CouchDB, DocumentDB, MongoDB, …

● Key-value: MemcacheDB, Redis, Aerospike, …

● Graph: Neo4J, InfiniteGraph, OrientDB, Virtuoso, Stardog, …

● Multi-model: Alchemy Database, CortexDB, …
MASCOTS 2015

3

MapReduce Systems
Commonly used in Big Data analytics

 By Facebook, Yahoo, Google, TaoBao, …

Simple workloads
 Word count, grep, sort, sampling, …

Complex workloads
 NutchIndexing, PageRank, Bayesian classification, K-means

clustering, log analyzer, simulation, …

 SQL like queries (Hive, Jaql, …) compiled to DAG of
MapReduce jobs, …

Map heavy
 Word count, grep, sampling, …

Reduce heavy
 Sort, queries, …

Data (I/O) heavy
 Sort

MASCOTS 2015

4

MapReduce overview

copy/shuffle sort/merge

reducemap

time

Function

View

System

View

Process

View

MASCOTS 2015

5

Map Reduce Modeling & System Optimization

Goal
 Identify inefficiencies in MapReduce mechanisms & fix them

 Improve the scheduling mechanism

 Performance modeling based approach for capacity planning
of MapReduce applications

Our past work
 Worked on both Hadoop & IBM Platform Symphony

 Inefficiencies:
● Reduce starvation, improve data locality, avoid scheduling delay

 Better scheduling & memory management
● Pause/resume for reducers, task interleaving

 Performance modeling and capacity planning
● Benchmarking on Symphony clusters for representative benchmarks

● Gray box performance models to
– capture perf metrics (e.g. completion time) as a function of job & system

parameters (e.g. data size, cluster size, # of map tasks & reduce tasks, …)

● Help users determine required capacity setting for a target level SLA

 Deliver capabilities to IBM Cloud products and services

MASCOTS 2015

Scheduling: heartbeat mechanism

MASCOTS 2015 6

JobTracker

Master node

Slave node

TaskTracker

Slave node

TaskTracker

Slave node

TaskTracker

Submit

MapReduce

job

Status

Task assignment

A scheduler is critical for good performance in presence of

multiple jobs

1) >25,000 MapReduce jobs/day (Facebook 2010)

2) Short jobs after large ones (trace study)

7

Scheduling is Not Easy!

Complexities
 Multiple phases for each job

 Multiple resources (cpu, or I/O, or network) may be stressed

 Fork and join feature for map/copy/shuffle phase

 Jobs with different characteristics

● Map heavy, reduce heavy, …

 Move computation vs move large amount of data

 May not be work conserving

Many Existing Schedulers (e.g. Fair)
 Lack of cooperation between map and reduce tasks

● Most existing work only optimizes the scheduling of map tasks or
reducers independently

 Dependence between map and reduce causes starvation

 No consideration of Reduce task locality (which depends on
map task allocations)

MASCOTS 2015

8

Existing work
 Fair (Facebook)

 Ensure a minimum number of slots to a job (fair for maps)

Quincy and Mantri for Dryad (Microsoft)
 Support a graph represented data processing model (DAG – direct

acyclic graph)

 Capacity (Yahoo)
 Support for multiple queues each with a fraction of capacity; a job

is submitted to a queue

 Others
 LATE – scheduling speculative tasks

 Delay – improve data locality

 Deadline oriented schedulers

 Research at IBM
 FLEX – add-on module to Fair to optimize a number of metrics

 M3R – Main Memory MapReduce engine in X10

 Platform Computing

MASCOTS 2015

9

Starvation problem

Difference between map and reduce
 Map: small and independent, run in parallel

 Reduce: long (fetch/shuffle sort/merge reduce)

● Launched in a greedy manner

M
a

p
 s

lo
t

R
e
d

u
c

e
 s

lo
t

Time

Job 1

Job 3

Job 2

Free

Reduce of job 3 can not start until

a reduce slot is available

MASCOTS 2015

10

Real experiment

If only Job 2’s reduce could start earlier …

MASCOTS 2015

11

Scheduler design

receive a

heartbeat
reduce progress

> map progress
schedule reducers

Wait Scheduling

schedule mappers

Random Peeking Scheduling

yes

no

 Coupling: launch reduce tasks according to the progress of
finished map tasks

 Reduce starvation

 Wait scheduling for reduce: place reducers close to the
“centrality” of the intermediate data on the tree topology by
skipping some received heartbeats

 Reduce data movement (improve data locality for reduce)

 Random peeking for map: allow launch map task on remote node

 Avoid scheduling delay (in large clusters)

MASCOTS 2015

12

Coupling to mitigate starvation

Fair

Coupling

Job 2 finishes early

Job 2 finishes late

Gradually launch

reduce tasks

Job 2 starts to wait

For reduce slots

MASCOTS 2015

13

Starvation time

Fair

Coupling

0 Starvation Time

Long Starvation Time

Starvation Time :=

Average time between

completion of last map task

and

start of each reduce task

Starvation Time

MASCOTS 2015

14

Experiment
 22 jobs: map heavy (Grep, QuasiMonteCarlo), reduce heavy (sort),

small, large …

 Repeat 5 times

 Coupling scheduler reduces starvation time

Reduced starvation

Starvation for Fair Starvation for Coupling

Processing Time (40% reduction)

MASCOTS 2015

15

Larger, more realistic experiment

Compare job processing times distribution (200 jobs)

Test bed
One master node and 62 slave nodes; each node has 4 cores (2933MHz,

32KB cache size),

6GB of memory and 72GB of disk.

Set 4 map slots and 2 reduce slots for each node.

21.3% improvement in average job processing time

MASCOTS 2015

It’s all good and cool and dry so far.

But, what about a MODEL?

One does not get to present at

MASCOTS without showing a MODEL !

Let’s get wet !

MASCOTS 2015 16

Map processing

Copy/Shuffle

17

Queueing model & analysis

MASCOTS 2015

Fetched <= Generated

Overlapping Tandem Queue

MASCOTS 2015 18

J2task0

J1task1

J2task1

J3task0

…

output0

output1

input outputmap phase reduce phase

job2

job1

job2

job3

map phase shuffle phase

reduce phasejobs

overlapping

μ1 μ2

shuffle phase

Overlapping Tandem Queue

MASCOTS 2015 19

Map

work

Map

completed

work

Reduce

completed

work

Reduce

work

Traditional Tandem Queue

MASCOTS 2015 20

Map

work

Map

completed

work

Reduce

completed

work

Reduce

work

Which model fits better?

MASCOTS 2015 21

Map

work

Reduce

work

Measurement

from real system

Overlapping

Tandem Queue

Traditional

Tandem Queue

Difference from classical models
Overlapping tandem queue

 Fluid model: big data is like fluid!

 Tandem queueing model

 No overlapping

 Usually Poisson arrivals

 Usually independent exponential service at each station

 Flow shop model

 No overlapping

 Batch jobs

 Focus on non-preemptive scheduling and makespan

criterion

MASCOTS 2015 22

Model parameters

MASCOTS 2015

map phase shuffle phase

reduce phasejobs

overlapping

μ1
μ2

μ1= total processing capacity of all map slots

μ2= total network capacity between map slots and reduce slots

Reasonable assumption when each job has more tasks than machines.

size of job-i:
service time: xi for map phase,

yi for shuffle phase

normalizing

μ1=1, μ2=1.

can be estimated in practice:
(a) Run a few map tasks of job-i.

(b) Linear prediction based on task time and intermediate data size.

xi

yi

23

Online scheduling algorithm:

MaxSRPT

Focus on “finishing small jobs early”.

Better for “balanced jobs”

time to go through an idle system

How good is it?

Not more than 2

MASCOTS 2015 24

Online scheduling algorithm:

SplitSRPT
Focus on “keeping the shuffle phase busy”.

Mix map-heavy job and shuffle-heavy job.

map phase shuffle phase

overlapping

μ1
μ2

Not more than 2Better for “unbalanced jobs”
MASCOTS 2015 25

26

Queueing model

 Ai – arrival interval

Poisson process

 Bi – map service of job i

Power law

j

iD

MapTask

ReduceTask

iB

iA

Job submission

Reduce phase

Output

  i

j

i

j

i RjDC 1 ,,

Copy/shuffle

Available slot

)()(tt
i

j
i

BC


j

iC

 Ri – # of reducers of job i

specified by users

 Task progress constraint
)()(tt

i
j
i

BC


MASCOTS 2015

27

Heavy-tailed workload characteristics

- i.i.d. map service is regularly varying with indexiB

0,1)(/)(lim   xlxlx

1,0,/)(][  xxxlxBP i

l(x) is slowly varying

S. Kavulya, et al. An analysis of traces from a production mapreduce cluster, CCGRID '10

.
log

][log




t

tBP

G. Ananthanarayanan, et al. PACMan: Coordinated Memory Caching for Parallel Jobs, NSDI '12MASCOTS 2015

28

Criticality phenomenon in heavy tails

If then, for Fair Scheduler,1,1][BE ,][][rCERE 

A large job temporarily

blocks the reduce queue

input rate < service rate

input rate > service rate

large jobs temporarily

block the reduce queue

k

MASCOTS 2015

29

Validation of criticality

 Results match strikingly

well with analysis

 Each job under Test 2 runs faster

than under Test 1 in a stand-

alone environment

 On contrary, job execution times

under Test 2 are much worse

than Test 1 in a shared

environment

 Test bed

 24 nodes – 4 map + 2 reduce slots

 Linux 22.6.18-194.17.4.el5 kernel.

 Four 2.67GHz hex-core per node

 Intel Xeon X5650 CPUs with Hyper-

threading capability

 24GB memory + two 500GB

Western Digital SATA hard drivers.

 All nodes on the same Top-of-Rack

1Gigabit Ethernet switch.

MASCOTS 2015

30

DynMR for IBM Platform Symphony
Performance issues

 Macroscopic
● Difficulty in selecting optimal performance parameters (reduce #,

MR ratio, slow-start); Auto-tuning (similar to star-fish) is also
difficult

● No flow control for fetching data (cause under/over utilization of
the fetch threads)

● Selfish users can monopolize the cluster by running many long
reduce tasks; Unfairness to small jobs

● Unfair (YARN emphasizes fairness by assuming a single task
type, MapReduce has both map and reduce)

 Microscopic
● Long-tailed reduce tasks caused by data skew or heterogeneous

computing nodes

● Reducer bundle several functional phases together and can only
process the data of one partition; No pipelining between fetchers
and mergers

● No pause-resume mechanism for ReduceTasks

MASCOTS 2015

How can we do better?

Wish list:

Preemption

 Efficient context switching

Balance Map & Reduce resources

 Flow control

MASCOTS 2015 31

32

DynMR Design
 Multiple ReduceTasks in a progressive queue

share a single JVM

Guiding principle
1 Use fine-grained reduce tasks (smaller partitions)

2 Delicately schedule tasks in refined time scales

3 Efficient task context switching

DynMR adaptively interleaves partially-completed
ReduceTasks and backfills MapTasks

1 Detect-and-yield: identify best time points to switch
tasks

2 Flow control: assemble multiple tasks into a progressive
queue, to form a “bigger task”

3 Segment manager
1 Manage data segments of multiple tasks

2 Extract merge threads as standalone services

When?

How
many?

What
about
data?

MASCOTS 2015

33

Session Manager

(Job Tracker C++)

DynMR High Level Architecture

Progressive

Queue (C++)

MapTask

ReduceTask

Flow Control

Master node

Service Instance

JVM

Heap

Detect & Yield

Segment

Manager

Service Instance

JVM

Heap

Detect & Yield

Slave node

Disk

Control &

Messages

MergeMerge

Instance

Manager

(C++)

Progressive

Queue (C++)

MapTask

ReduceTask

Segment

Manager

Instance

Manager

(C++)

MASCOTS 2015

34

DynMR Execution Example

Fetch 1 1 1 1

Fetch 2 2 2

Fetch 3 3 3

Reduce

Reduce

Reduce

Interleaved ReduceTasks

3
 R

ed
u

ce
T

as
k

s
in

 a

p
ro

g
re

ss
iv

e
q

u
eu

e

MapMapMap

Map Map Map

Memory-to-disk

merge

Available

Memory

Remote

map output

Disk-to-disk

merge

Standalone services

Map

Detect-and-yield

Map

Backfill

Fetch threads

Segment manager

Flow control

1

2

3

3

2

Add

Within a JVM

Task execution pattern in time

Time

MASCOTS 2015

35

Default parameter values are: 1:1, 0.05, 384.

Experiments – Single Job
Shorter execution timeBetter utilizationTerasort

MASCOTS 2015

36

Experiments – Single Job

Small ReduceTasks yield more often
More Small ReduceTasks in

1 progressive queue

Terasort

service rounds and # tasks in a progressive queue
(skewed data)

Shorter execution timeBetter utilization

MASCOTS 2015

37

Experiment – Multiple Jobs

MASCOTS 2015

Summary
MapReduce systems

Starvation problem

Solutions:
Coupling scheduler

Preemption mechanism

DynMR

Performance Models
Overlapping Tandem Queue

Online scheduling

Heavy tail analysis
MASCOTS 2015 38

39

Research Activities on MapReduce
 Coupling scheduler for Hadoop

 Infocom 2012, Sigmetrics 2012, Infocom 2013, Cloud 2013

 Pre-emptive scheduler for Hadoop
 Efficient pause/resume mechanism for Reduce tasks

 Improves fairness & reduces execution time

 ICAC 2013, Sigmetrics 2014

 DynMR: dynamic task interleave for Symphony
 Interleave Map and Reduce tasks for Platform Symphony product

 Improve Terasort speed to 1.7x

 EuroSys 2014

Online parameter tuning
 Adjust parameter settings (cpu, memory) online for better

performance

 HPDC 2014

 Performance modeling & capacity planning
 Overlapping tandem queue model & algorithm analysis

 IFIP Performance 2013

 Capacity planning: given a target execution time, determine
number & type of VMs, number of reduce tasks per VM

D
e
e
p

e
r C

h
a
n

g
e
s

MASCOTS 2015

40

Thank You!

MASCOTS 2015

