
Modeling and Optimization 

of Big Data Systems

Li Zhang

System Analysis & Optimization Group

IBM T. J. Watson Research Center

Collaborations with many colleagues, students at IBM and 

many academic collaborators.



2

Big Data Systems
Characteristics of Big Data Systems

 Volume

 Variety

 Velocity

 Variability

 Veracity

 Complexity

Examples
 Storage:        HDFS, GFS, …

 Processing:  MapReduce, Spark, Hive, …

 NoSQL stores: 
● Column:       Cassandra, Hbase, …

● Document:   CouchDB, DocumentDB, MongoDB, …

● Key-value:    MemcacheDB, Redis, Aerospike, …

● Graph:          Neo4J, InfiniteGraph, OrientDB, Virtuoso, Stardog, …

● Multi-model: Alchemy Database, CortexDB, …
MASCOTS 2015
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MapReduce Systems
Commonly used in Big Data analytics

 By Facebook, Yahoo, Google, TaoBao, …

Simple workloads
 Word count, grep, sort, sampling, …

Complex workloads
 NutchIndexing, PageRank, Bayesian classification, K-means 

clustering, log analyzer, simulation, …

 SQL like queries (Hive, Jaql, …) compiled to DAG of 
MapReduce jobs, …

Map heavy
 Word count, grep, sampling, …

Reduce heavy
 Sort, queries, …

Data (I/O) heavy
 Sort
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MapReduce overview

copy/shuffle sort/merge

reducemap

time

Function

View

System

View

Process

View
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Map Reduce Modeling & System Optimization

Goal
 Identify inefficiencies in MapReduce mechanisms & fix them

 Improve the scheduling mechanism

 Performance modeling based approach for capacity planning
of MapReduce applications

Our past work
 Worked on both    Hadoop &   IBM Platform Symphony

 Inefficiencies:
● Reduce starvation,    improve data locality,   avoid scheduling delay

 Better scheduling  &  memory management
● Pause/resume for reducers,    task interleaving

 Performance modeling and capacity planning
● Benchmarking on Symphony clusters for representative benchmarks

● Gray box performance models to 
– capture perf metrics (e.g. completion time) as a function of job & system 

parameters (e.g. data size, cluster size, # of map tasks & reduce tasks, …)

● Help users determine required capacity setting for a target level SLA

 Deliver capabilities to IBM Cloud products and services
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Scheduling: heartbeat mechanism
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JobTracker

Master node

Slave node

TaskTracker

Slave node

TaskTracker

Slave node

TaskTracker

Submit

MapReduce

job

Status

Task assignment

A scheduler is critical for good performance in presence of 

multiple jobs

1)  >25,000 MapReduce jobs/day (Facebook 2010)

2)  Short jobs after large ones (trace study)
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Scheduling is Not Easy!

Complexities
 Multiple phases for each job

 Multiple resources ( cpu, or I/O, or network ) may be stressed

 Fork and join feature for map/copy/shuffle phase

 Jobs with different characteristics

● Map heavy, reduce heavy, …

 Move computation   vs   move large amount of data

 May not be work conserving

Many Existing Schedulers (e.g. Fair)
 Lack of cooperation between map and reduce tasks

● Most existing work only optimizes the scheduling of map tasks or 
reducers independently

 Dependence between map and reduce causes starvation

 No consideration of Reduce task locality (which depends on 
map task allocations)
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Existing work
 Fair (Facebook)

 Ensure a minimum number of slots to a job (fair for maps)

Quincy and Mantri for Dryad (Microsoft)
 Support a graph represented data processing model (DAG – direct 

acyclic graph)

 Capacity (Yahoo)
 Support for multiple queues each with a fraction of capacity; a job 

is submitted to a queue 

 Others
 LATE – scheduling speculative tasks

 Delay – improve data locality

 Deadline oriented schedulers

 Research at IBM
 FLEX – add-on module to Fair to optimize a number of metrics

 M3R – Main Memory MapReduce engine in X10

 Platform Computing
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Starvation problem

Difference between map and reduce 
 Map: small and independent, run in parallel

 Reduce: long (fetch/shuffle       sort/merge       reduce)

● Launched in a greedy manner
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Job 1

Job 3

Job 2

Free

Reduce of job 3 can not start until 

a reduce slot is available
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Real experiment

If only Job 2’s reduce could start earlier …
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Scheduler design

receive a

heartbeat
reduce progress

> map progress
schedule reducers

Wait Scheduling

schedule mappers

Random Peeking Scheduling

yes

no

 Coupling: launch reduce tasks according to the progress of 
finished map tasks

 Reduce starvation

 Wait scheduling for reduce:  place reducers close to the 
“centrality” of the intermediate data on the tree topology by 
skipping some received heartbeats

 Reduce data movement (improve data locality for reduce)

 Random peeking for map:  allow launch map task on remote node

 Avoid scheduling delay (in large clusters)
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Coupling to mitigate starvation

Fair

Coupling

Job 2 finishes early

Job 2 finishes late

Gradually launch 

reduce tasks

Job 2 starts to wait

For reduce slots 
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Starvation time

Fair

Coupling

0 Starvation Time

Long Starvation Time

Starvation Time :=

Average time between 

completion of last map task 

and

start of each reduce task  

Starvation Time
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Experiment
 22 jobs: map heavy (Grep, QuasiMonteCarlo), reduce heavy (sort), 

small, large …

 Repeat 5 times

 Coupling scheduler reduces starvation time

Reduced starvation

Starvation for Fair Starvation for Coupling

Processing Time (40% reduction)

MASCOTS 2015
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Larger, more realistic experiment

Compare job processing times distribution ( 200 jobs )

Test bed
One master node and 62 slave nodes; each node has 4 cores (2933MHz, 

32KB cache size),  

6GB of memory and 72GB of disk. 

Set 4 map slots and 2 reduce slots for each node.

21.3% improvement in average job processing time
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It’s all good and cool and dry so far.

But, what about a MODEL?

One does not get to present at 

MASCOTS without showing a MODEL !

Let’s get wet !

MASCOTS 2015 16

Map processing

Copy/Shuffle
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Queueing model & analysis

MASCOTS 2015

Fetched <= Generated



Overlapping Tandem Queue

MASCOTS 2015 18

J2task0

J1task1

J2task1

J3task0

…

output0

output1

input outputmap phase reduce phase

job2

job1

job2

job3

map phase shuffle phase

reduce phasejobs

overlapping

μ1 μ2

shuffle phase



Overlapping Tandem Queue
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Traditional Tandem Queue
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Which model fits better?
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Reduce
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from real system
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Difference from classical models
Overlapping tandem queue

 Fluid model:     big data is like fluid!

 Tandem queueing model

 No overlapping

 Usually Poisson arrivals

 Usually independent exponential service at each station

 Flow shop model

 No overlapping

 Batch jobs

 Focus on non-preemptive scheduling and makespan 

criterion
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Model parameters

MASCOTS 2015

map phase shuffle phase

reduce phasejobs

overlapping

μ1
μ2

μ1= total processing capacity of all map slots

μ2= total network capacity between map slots and reduce slots

Reasonable assumption when each job has more tasks than machines.

size of job-i:
service time: xi for map phase, 

yi for shuffle phase

normalizing

μ1=1, μ2=1.

can be estimated in practice:
(a) Run a few map tasks of job-i.

(b) Linear prediction based on task time and intermediate data size.

xi

yi
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Online scheduling algorithm: 

MaxSRPT

Focus on “finishing small jobs early”.

Better for “balanced jobs”

time to go through an idle system

How good is it?

Not more than 2

MASCOTS 2015 24



Online scheduling algorithm: 

SplitSRPT
Focus on “keeping the shuffle phase busy”.

Mix map-heavy job and shuffle-heavy job.

map phase shuffle phase

overlapping

μ1
μ2

Not more than 2Better for “unbalanced jobs”
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Queueing model

 Ai – arrival interval

Poisson process      

 Bi – map service of job i

Power law
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Heavy-tailed workload characteristics

- i.i.d. map service is regularly varying with indexiB

0,1)(/)(lim   xlxlx

1,0,/)(][   xxxlxBP i

l(x) is slowly varying

S. Kavulya, et al. An analysis of traces from a production mapreduce cluster, CCGRID '10

.
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G. Ananthanarayanan, et al. PACMan: Coordinated Memory Caching for Parallel Jobs, NSDI '12MASCOTS 2015
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Criticality phenomenon in heavy tails

If                                                 then, for Fair Scheduler,1,1][ BE ,][][ rCERE 

A large job temporarily  

blocks the reduce queue

input rate < service rate

input rate > service rate

large jobs temporarily  

block the reduce queue

k
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Validation of criticality

 Results match strikingly 

well with analysis

 Each job under Test 2 runs faster 

than under Test 1 in a stand-

alone environment

 On contrary, job execution times 

under Test 2 are much worse 

than Test 1 in a shared 

environment

 Test bed

 24 nodes – 4 map + 2 reduce slots

 Linux 22.6.18-194.17.4.el5 kernel. 

 Four 2.67GHz hex-core per node

 Intel Xeon X5650 CPUs with Hyper-

threading capability

 24GB memory + two 500GB 

Western Digital SATA hard drivers. 

 All nodes on the same Top-of-Rack 

1Gigabit Ethernet switch.

MASCOTS 2015
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DynMR for IBM Platform Symphony
Performance issues

 Macroscopic
● Difficulty in selecting optimal performance parameters (reduce #, 

MR ratio, slow-start); Auto-tuning (similar to star-fish) is also 
difficult

● No flow control for fetching data (cause under/over utilization of 
the fetch threads)

● Selfish users can monopolize the cluster by running many long 
reduce tasks; Unfairness to small jobs

● Unfair (YARN emphasizes fairness by assuming a single task 
type, MapReduce has both map and reduce)

 Microscopic
● Long-tailed reduce tasks caused by data skew or heterogeneous 

computing nodes

● Reducer bundle several functional phases together and can only 
process the data of one partition; No pipelining between fetchers 
and mergers

● No pause-resume mechanism for ReduceTasks

MASCOTS 2015



How can we do better?

Wish list:

Preemption

 Efficient context switching

Balance Map & Reduce resources

 Flow control

MASCOTS 2015 31
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DynMR Design
 Multiple ReduceTasks in a progressive queue 

share a single JVM

Guiding principle
1 Use fine-grained reduce tasks (smaller partitions)

2 Delicately schedule tasks in refined time scales

3 Efficient task context switching

DynMR adaptively interleaves partially-completed
ReduceTasks and backfills MapTasks

1 Detect-and-yield: identify best time points to switch 
tasks 

2 Flow control: assemble multiple tasks into a progressive 
queue, to form a “bigger task” 

3 Segment manager
1 Manage data segments of multiple tasks

2 Extract merge threads as standalone services

When?

How
many?

What 
about
data?

MASCOTS 2015
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Session Manager 

(Job Tracker C++)

DynMR High Level Architecture

Progressive 

Queue (C++)

MapTask

ReduceTask

Flow Control

Master node

Service Instance

JVM

Heap

Detect & Yield

Segment

Manager

Service Instance

JVM

Heap

Detect & Yield

Slave node

Disk

Control & 

Messages

MergeMerge

Instance

Manager

(C++)

Progressive 

Queue (C++)

MapTask

ReduceTask

Segment

Manager

Instance

Manager

(C++)
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DynMR Execution Example

Fetch 1 1 1 1

Fetch 2 2 2

Fetch 3 3 3

Reduce

Reduce

Reduce

Interleaved ReduceTasks
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Default parameter values are:   1:1,   0.05,   384.

Experiments – Single Job
Shorter execution timeBetter utilizationTerasort

MASCOTS 2015
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Experiments – Single Job

Small ReduceTasks yield more often
More Small ReduceTasks in 

1 progressive queue

Terasort

# service rounds and # tasks in a progressive queue 
(skewed data)

Shorter execution timeBetter utilization

MASCOTS 2015
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Experiment – Multiple Jobs
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Summary
MapReduce systems

Starvation problem

Solutions:
Coupling scheduler

Preemption mechanism

DynMR

Performance Models
Overlapping Tandem Queue

Online scheduling

Heavy tail analysis
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Research Activities on MapReduce
 Coupling scheduler for Hadoop

 Infocom 2012, Sigmetrics 2012, Infocom 2013, Cloud 2013

 Pre-emptive scheduler for Hadoop
 Efficient pause/resume mechanism for Reduce tasks

 Improves fairness  &  reduces execution time

 ICAC 2013, Sigmetrics 2014

 DynMR: dynamic task interleave for Symphony
 Interleave Map and Reduce tasks for Platform Symphony product

 Improve Terasort speed to 1.7x

 EuroSys 2014

Online parameter tuning
 Adjust parameter settings (cpu, memory) online for better 

performance

 HPDC 2014

 Performance modeling & capacity planning
 Overlapping tandem queue model & algorithm analysis

 IFIP Performance 2013

 Capacity planning: given a target execution time, determine 
number & type of VMs, number of reduce tasks per VM
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Thank  You!
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