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Big Data Systems
Characteristics of Big Data Systems

 Volume

 Variety

 Velocity

 Variability

 Veracity

 Complexity

Examples
 Storage:        HDFS, GFS, …

 Processing:  MapReduce, Spark, Hive, …

 NoSQL stores: 
● Column:       Cassandra, Hbase, …

● Document:   CouchDB, DocumentDB, MongoDB, …

● Key-value:    MemcacheDB, Redis, Aerospike, …

● Graph:          Neo4J, InfiniteGraph, OrientDB, Virtuoso, Stardog, …

● Multi-model: Alchemy Database, CortexDB, …
MASCOTS 2015
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MapReduce Systems
Commonly used in Big Data analytics

 By Facebook, Yahoo, Google, TaoBao, …

Simple workloads
 Word count, grep, sort, sampling, …

Complex workloads
 NutchIndexing, PageRank, Bayesian classification, K-means 

clustering, log analyzer, simulation, …

 SQL like queries (Hive, Jaql, …) compiled to DAG of 
MapReduce jobs, …

Map heavy
 Word count, grep, sampling, …

Reduce heavy
 Sort, queries, …

Data (I/O) heavy
 Sort
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MapReduce overview

copy/shuffle sort/merge
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time
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View
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View
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Map Reduce Modeling & System Optimization

Goal
 Identify inefficiencies in MapReduce mechanisms & fix them

 Improve the scheduling mechanism

 Performance modeling based approach for capacity planning
of MapReduce applications

Our past work
 Worked on both    Hadoop &   IBM Platform Symphony

 Inefficiencies:
● Reduce starvation,    improve data locality,   avoid scheduling delay

 Better scheduling  &  memory management
● Pause/resume for reducers,    task interleaving

 Performance modeling and capacity planning
● Benchmarking on Symphony clusters for representative benchmarks

● Gray box performance models to 
– capture perf metrics (e.g. completion time) as a function of job & system 

parameters (e.g. data size, cluster size, # of map tasks & reduce tasks, …)

● Help users determine required capacity setting for a target level SLA

 Deliver capabilities to IBM Cloud products and services
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Scheduling: heartbeat mechanism
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JobTracker

Master node

Slave node

TaskTracker

Slave node

TaskTracker

Slave node

TaskTracker

Submit

MapReduce

job

Status

Task assignment

A scheduler is critical for good performance in presence of 

multiple jobs

1)  >25,000 MapReduce jobs/day (Facebook 2010)

2)  Short jobs after large ones (trace study)
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Scheduling is Not Easy!

Complexities
 Multiple phases for each job

 Multiple resources ( cpu, or I/O, or network ) may be stressed

 Fork and join feature for map/copy/shuffle phase

 Jobs with different characteristics

● Map heavy, reduce heavy, …

 Move computation   vs   move large amount of data

 May not be work conserving

Many Existing Schedulers (e.g. Fair)
 Lack of cooperation between map and reduce tasks

● Most existing work only optimizes the scheduling of map tasks or 
reducers independently

 Dependence between map and reduce causes starvation

 No consideration of Reduce task locality (which depends on 
map task allocations)
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Existing work
 Fair (Facebook)

 Ensure a minimum number of slots to a job (fair for maps)

Quincy and Mantri for Dryad (Microsoft)
 Support a graph represented data processing model (DAG – direct 

acyclic graph)

 Capacity (Yahoo)
 Support for multiple queues each with a fraction of capacity; a job 

is submitted to a queue 

 Others
 LATE – scheduling speculative tasks

 Delay – improve data locality

 Deadline oriented schedulers

 Research at IBM
 FLEX – add-on module to Fair to optimize a number of metrics

 M3R – Main Memory MapReduce engine in X10

 Platform Computing
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Starvation problem

Difference between map and reduce 
 Map: small and independent, run in parallel

 Reduce: long (fetch/shuffle       sort/merge       reduce)

● Launched in a greedy manner
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Reduce of job 3 can not start until 

a reduce slot is available
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Real experiment

If only Job 2’s reduce could start earlier …
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Scheduler design

receive a

heartbeat
reduce progress

> map progress
schedule reducers

Wait Scheduling

schedule mappers

Random Peeking Scheduling

yes

no

 Coupling: launch reduce tasks according to the progress of 
finished map tasks

 Reduce starvation

 Wait scheduling for reduce:  place reducers close to the 
“centrality” of the intermediate data on the tree topology by 
skipping some received heartbeats

 Reduce data movement (improve data locality for reduce)

 Random peeking for map:  allow launch map task on remote node

 Avoid scheduling delay (in large clusters)
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Coupling to mitigate starvation

Fair

Coupling

Job 2 finishes early

Job 2 finishes late

Gradually launch 

reduce tasks

Job 2 starts to wait

For reduce slots 
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Starvation time

Fair

Coupling

0 Starvation Time

Long Starvation Time

Starvation Time :=

Average time between 

completion of last map task 

and

start of each reduce task  

Starvation Time
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Experiment
 22 jobs: map heavy (Grep, QuasiMonteCarlo), reduce heavy (sort), 

small, large …

 Repeat 5 times

 Coupling scheduler reduces starvation time

Reduced starvation

Starvation for Fair Starvation for Coupling

Processing Time (40% reduction)

MASCOTS 2015
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Larger, more realistic experiment

Compare job processing times distribution ( 200 jobs )

Test bed
One master node and 62 slave nodes; each node has 4 cores (2933MHz, 

32KB cache size),  

6GB of memory and 72GB of disk. 

Set 4 map slots and 2 reduce slots for each node.

21.3% improvement in average job processing time
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It’s all good and cool and dry so far.

But, what about a MODEL?

One does not get to present at 

MASCOTS without showing a MODEL !

Let’s get wet !
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Copy/Shuffle



17

Queueing model & analysis

MASCOTS 2015

Fetched <= Generated



Overlapping Tandem Queue
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Overlapping Tandem Queue
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Traditional Tandem Queue
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Which model fits better?
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Difference from classical models
Overlapping tandem queue

 Fluid model:     big data is like fluid!

 Tandem queueing model

 No overlapping

 Usually Poisson arrivals

 Usually independent exponential service at each station

 Flow shop model

 No overlapping

 Batch jobs

 Focus on non-preemptive scheduling and makespan 

criterion

MASCOTS 2015 22



Model parameters

MASCOTS 2015

map phase shuffle phase

reduce phasejobs

overlapping

μ1
μ2

μ1= total processing capacity of all map slots

μ2= total network capacity between map slots and reduce slots

Reasonable assumption when each job has more tasks than machines.

size of job-i:
service time: xi for map phase, 

yi for shuffle phase

normalizing

μ1=1, μ2=1.

can be estimated in practice:
(a) Run a few map tasks of job-i.

(b) Linear prediction based on task time and intermediate data size.

xi

yi

23



Online scheduling algorithm: 

MaxSRPT

Focus on “finishing small jobs early”.

Better for “balanced jobs”

time to go through an idle system

How good is it?

Not more than 2
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Online scheduling algorithm: 

SplitSRPT
Focus on “keeping the shuffle phase busy”.

Mix map-heavy job and shuffle-heavy job.

map phase shuffle phase

overlapping

μ1
μ2

Not more than 2Better for “unbalanced jobs”
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Queueing model

 Ai – arrival interval

Poisson process      

 Bi – map service of job i

Power law
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Heavy-tailed workload characteristics

- i.i.d. map service is regularly varying with indexiB
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1,0,/)(][   xxxlxBP i
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S. Kavulya, et al. An analysis of traces from a production mapreduce cluster, CCGRID '10
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G. Ananthanarayanan, et al. PACMan: Coordinated Memory Caching for Parallel Jobs, NSDI '12MASCOTS 2015
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Criticality phenomenon in heavy tails

If                                                 then, for Fair Scheduler,1,1][ BE ,][][ rCERE 

A large job temporarily  

blocks the reduce queue

input rate < service rate

input rate > service rate

large jobs temporarily  

block the reduce queue

k
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Validation of criticality

 Results match strikingly 

well with analysis

 Each job under Test 2 runs faster 

than under Test 1 in a stand-

alone environment

 On contrary, job execution times 

under Test 2 are much worse 

than Test 1 in a shared 

environment

 Test bed

 24 nodes – 4 map + 2 reduce slots

 Linux 22.6.18-194.17.4.el5 kernel. 

 Four 2.67GHz hex-core per node

 Intel Xeon X5650 CPUs with Hyper-

threading capability

 24GB memory + two 500GB 

Western Digital SATA hard drivers. 

 All nodes on the same Top-of-Rack 

1Gigabit Ethernet switch.
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DynMR for IBM Platform Symphony
Performance issues

 Macroscopic
● Difficulty in selecting optimal performance parameters (reduce #, 

MR ratio, slow-start); Auto-tuning (similar to star-fish) is also 
difficult

● No flow control for fetching data (cause under/over utilization of 
the fetch threads)

● Selfish users can monopolize the cluster by running many long 
reduce tasks; Unfairness to small jobs

● Unfair (YARN emphasizes fairness by assuming a single task 
type, MapReduce has both map and reduce)

 Microscopic
● Long-tailed reduce tasks caused by data skew or heterogeneous 

computing nodes

● Reducer bundle several functional phases together and can only 
process the data of one partition; No pipelining between fetchers 
and mergers

● No pause-resume mechanism for ReduceTasks
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How can we do better?

Wish list:

Preemption

 Efficient context switching

Balance Map & Reduce resources

 Flow control

MASCOTS 2015 31
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DynMR Design
 Multiple ReduceTasks in a progressive queue 

share a single JVM

Guiding principle
1 Use fine-grained reduce tasks (smaller partitions)

2 Delicately schedule tasks in refined time scales

3 Efficient task context switching

DynMR adaptively interleaves partially-completed
ReduceTasks and backfills MapTasks

1 Detect-and-yield: identify best time points to switch 
tasks 

2 Flow control: assemble multiple tasks into a progressive 
queue, to form a “bigger task” 

3 Segment manager
1 Manage data segments of multiple tasks

2 Extract merge threads as standalone services

When?

How
many?

What 
about
data?

MASCOTS 2015
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Session Manager 

(Job Tracker C++)

DynMR High Level Architecture

Progressive 

Queue (C++)

MapTask

ReduceTask

Flow Control
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JVM
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Detect & Yield

Segment

Manager

Service Instance

JVM
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Disk
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MergeMerge

Instance

Manager
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Manager

Instance

Manager
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DynMR Execution Example

Fetch 1 1 1 1

Fetch 2 2 2

Fetch 3 3 3

Reduce

Reduce

Reduce
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Default parameter values are:   1:1,   0.05,   384.

Experiments – Single Job
Shorter execution timeBetter utilizationTerasort

MASCOTS 2015
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Experiments – Single Job

Small ReduceTasks yield more often
More Small ReduceTasks in 

1 progressive queue

Terasort

# service rounds and # tasks in a progressive queue 
(skewed data)

Shorter execution timeBetter utilization

MASCOTS 2015
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Experiment – Multiple Jobs

MASCOTS 2015



Summary
MapReduce systems

Starvation problem

Solutions:
Coupling scheduler

Preemption mechanism

DynMR

Performance Models
Overlapping Tandem Queue

Online scheduling

Heavy tail analysis
MASCOTS 2015 38
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Research Activities on MapReduce
 Coupling scheduler for Hadoop

 Infocom 2012, Sigmetrics 2012, Infocom 2013, Cloud 2013

 Pre-emptive scheduler for Hadoop
 Efficient pause/resume mechanism for Reduce tasks

 Improves fairness  &  reduces execution time

 ICAC 2013, Sigmetrics 2014

 DynMR: dynamic task interleave for Symphony
 Interleave Map and Reduce tasks for Platform Symphony product

 Improve Terasort speed to 1.7x

 EuroSys 2014

Online parameter tuning
 Adjust parameter settings (cpu, memory) online for better 

performance

 HPDC 2014

 Performance modeling & capacity planning
 Overlapping tandem queue model & algorithm analysis

 IFIP Performance 2013

 Capacity planning: given a target execution time, determine 
number & type of VMs, number of reduce tasks per VM
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Thank  You!
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