Modeling and Optimization of Big Data Systems

Li Zhang System Analysis & Optimization Group IBM T. J. Watson Research Center

Collaborations with many colleagues, students at IBM and many academic collaborators.

Big Data Systems

Characteristics of Big Data Systems

- Volume
- Variety
- Velocity
- Variability
- Veracity
- Complexity

Examples

- Storage: HDFS, GFS, ...
- Processing: MapReduce, Spark, Hive, …
- NoSQL stores:
 - Column: Cassandra, Hbase, ...
 - Document: CouchDB, DocumentDB, MongoDB, ...
 - Key-value: MemcacheDB, Redis, Aerospike, ...
 - Graph: Neo4J, InfiniteGraph, OrientDB, Virtuoso, Stardog, ...
 - Multi-model: Alchemy Database, CortexDB, ...

MapReduce Systems

Commonly used in Big Data analytics

By Facebook, Yahoo, Google, TaoBao, ...

Simple workloads

Word count, grep, sort, sampling, …

Complex workloads

- NutchIndexing, PageRank, Bayesian classification, K-means clustering, log analyzer, simulation, …
- SQL like queries (Hive, Jaql, ...) compiled to DAG of MapReduce jobs, ...

Map heavy

Word count, grep, sampling, …

Reduce heavy

Sort, queries, …

Data (I/O) heavy

Sort

MapReduce overview

Map Reduce Modeling & System Optimization

Goal

- Identify inefficiencies in MapReduce mechanisms & fix them
- Improve the scheduling mechanism
- Performance modeling based approach for capacity planning of MapReduce applications

Our past work

- Worked on both Hadoop & IBM Platform Symphony
- Inefficiencies:
 - Reduce starvation, improve data locality, avoid scheduling delay
- Better scheduling & memory management
 - Pause/resume for reducers, task interleaving
- Performance modeling and capacity planning
 - Benchmarking on Symphony clusters for representative benchmarks
 - Gray box performance models to
 - capture perf metrics (e.g. completion time) as a function of job & system parameters (e.g. data size, cluster size, # of map tasks & reduce tasks, ...)
 - Help users determine required capacity setting for a target level SLA
- Deliver capabilities to IBM Cloud products and services

Scheduling: heartbeat mechanism

A scheduler is critical for good performance in presence of multiple jobs

- 1) >25,000 MapReduce jobs/day (Facebook 2010)
- 2) Short jobs after large ones (trace study)

Scheduling is Not Easy!

Complexities

- Multiple phases for each job
- Multiple resources (cpu, or I/O, or network) may be stressed
- Fork and join feature for map/copy/shuffle phase
- Jobs with different characteristics
 - Map heavy, reduce heavy, …
- Move computation vs move large amount of data
- May not be work conserving

Many Existing Schedulers (e.g. Fair)

- Lack of cooperation between map and reduce tasks
 - Most existing work only optimizes the scheduling of map tasks or reducers independently
- Dependence between map and reduce causes starvation
- No consideration of Reduce task locality (which depends on map task allocations)

Existing work

Fair (Facebook)

Ensure a minimum number of slots to a job (fair for maps)

Quincy and Mantri for Dryad (Microsoft)

Support a graph represented data processing model (DAG – direct acyclic graph)

Capacity (Yahoo)

 Support for multiple queues each with a fraction of capacity; a job is submitted to a queue

Others

- LATE scheduling speculative tasks
- Delay improve data locality
- Deadline oriented schedulers

Research at IBM

- FLEX add-on module to Fair to optimize a number of metrics
- M3R Main Memory MapReduce engine in X10
- Platform Computing

Starvation problem

Difference between map and reduce

- Map: small and independent, run in parallel
- Reduce: long (fetch/shuffle → sort/merge → reduce)

Real experiment

If only Job 2's reduce could start earlier ...

MASCOTS 2015

Scheduler design

- Coupling: launch reduce tasks according to the progress of finished map tasks
 - Reduce starvation
- Wait scheduling for reduce: place reducers close to the "centrality" of the intermediate data on the tree topology by skipping some received heartbeats
 - Reduce data movement (improve data locality for reduce)
- Random peeking for map: allow launch map task on remote node
 - Avoid scheduling delay (in large clusters)

Coupling to mitigate starvation

Starvation time

Reduced starvation

Experiment

- 22 jobs: map heavy (Grep, QuasiMonteCarlo), reduce heavy (sort), small, large ...
- Repeat 5 times
- Coupling scheduler reduces starvation time

Starvation for Fair Starvation for Coupling

	JOB SEQUE	ENCE						Processing	n Time (40	% rec	luction
JobID	Job	Time	M	R	S_F	S_C		110003311			
01	Grep [1-5]* randomInput	0	148	15	0.0	0.0		1			, I
02	Grep [5-9]* randomInput	30	148	15	9.0	2.0					
03	QuasiMonteCarlo	150	5	1	6.1	0.0	20				
04	WordCount randomInput05	170	8	1	4.0	0.0	ĺ		=		
05	Grep [2-6]* randomInput05	190	8	2	3.9	0.0	ĺ		4.		
06	Grep [3-6]* randomInput05	210	8	2	2.8	0.0					
07	Grep [4-6]* randomInput05	230	8	3	2.8	0.0					-
08	Grep [a-h][a-z]* wikiInput	470	427	15	0.0	0.2	15				
09	Grep [a-g][a-z]* wikiInput	500	427	15	0.0	0.0					
10	Sort randomPair1	800	224	27	4.9	4.5	Ω				
11	Grep [1-2]* randomInput10	860	15	5	8.3	0.9	b l				
12	Grep [1-5]* randomInput05	880	8	3	8.6	0.6					
13	Grep [6-9]* randomInput05	900	8	2	8.4	0.2	10				• • • •
14	Sort randomPair3	1020	64	27	5.3	3.5					
15	Grep [3-8]* randomInput20	1140	30	2	1.0	0.0	ĺ				
16	WordCount randomInput10	1440	15	1	0.1	0.0					
17	Sort randomPair2	1710	352	27	0.7	5.0	5	•			
18	QuasiMonteCarlo	2110	15	1	0.3	0.0					Coupling
19	Grep [1-5]* randomInput05	2125	8	3	0.0	0.0		4			
20	Sort randomPair3	2245	64	27	0.5	1.1	ĺ				-Fair
21	RandomWriter	2365	150	0	0.0	0.0	L				
22	QuasiMonteCarlo	2485	10	1	MA	SCO	TS 201	5_{10} 20) 30	40	50
			-	-				10 20	Time (minutes)	UT	50

Larger, more realistic experiment

Test bed

One master node and 62 slave nodes; each node has 4 cores (2933MHz, 32KB cache size),

6GB of memory and 72GB of disk.

Set 4 map slots and 2 reduce slots for each node.

Compare job processing times distribution (200 jobs)

21.3% improvement in average job processing time

MASCOTS 2015

Queueing model & analysis

Overlapping Tandem Queue

Overlapping Tandem Queue

Traditional Tandem Queue

Which model fits better?

Difference from classical models

Overlapping tandem queue

Fluid model: big data is like fluid!

Tandem queueing model

- No overlapping
- Usually Poisson arrivals
- Usually independent exponential service at each station

Flow shop model

- No overlapping
- Batch jobs
- Focus on non-preemptive scheduling and makespan criterion

Model parameters

Reasonable assumption when each job has more tasks than machines.

can be estimated in practice:

(a) Run a few map tasks of *job-i*.

(b) Linear prediction based on task time and intermediate data size.

Online scheduling algorithm: MaxSRPT

Focus on "finishing small jobs early".

time to go through an idle system

Algorithm. Both stations work on the jobs using SRPT based on $\max(x_i(t), y_i(t))$ subject to data availability.

How good is it?

Not more than 2

Theorem. Denote $\alpha = \max_i \max(x_i/y_i, y_i/x_i)$. The algorithm is $2\alpha/(1 + \alpha)$ -speed optimal.

Online scheduling algorithm: SplitSRPT

Focus on "keeping the shuffle phase busy".

Mix map-heavy job and shuffle-heavy job.

Algorithm. Denote $\beta = \min_i \max(x_i/y_i, y_i/x_i)$. Split the capacity of the map station so that $\mu_{m1} : \mu_{m2} = 1 : \beta$. Split the capacity of the shuffle station so that $\mu_{s1} : \mu_{s2} = \beta : 1$. For the new arrival J_k , update $S_1 = S_1 \cup \{J_k\}$ if $x_k/y_k \ge 1$ and $S_2 = S_2 \cup \{J_k\}$ if $x_k/y_k < 1$. Run jobs in S_1 by SRPT (map size) using μ_{m2} and μ_{s2} . Run jobs in S_2 by SRPT (shuffle size) using μ_{m1} and μ_{s1} .

Theorem. Denote $\beta = \min_i \max(x_i/y_i, y_i/x_i)$. The algorithm is $(1+1/\beta)$ -speed optimal.

MASCOTS 2015

Not more than 2

Queueing model

Heavy-tailed workload characteristics

S. Kavulya, et al. An analysis of traces from a production mapreduce cluster, CCGRID '10

 B_i - i.i.d. map service is regularly varying with index α $P[B_i > x] = l(x) / x^{\alpha}, x \ge 0, \alpha > 1$ I(x) is slowly varying $\lim_{x \to \infty} l(\lambda x) / l(x) = 1, \lambda > 0$

G. Ananthanarayanan, et al. PACMan: Coordinated Memory Caching for Parallel Jobs, NSDI '12

Criticality phenomenon in heavy tails

If $\lambda E[B] < 1$, $\lambda E[R]E[C] < r$, $\alpha > 1$, then, for Fair Scheduler

1. If
$$\mathbb{P}[R > r - \lambda \mathbb{E}[R]\mathbb{E}[C]] > 0$$
, then

$$\lim_{x \to \infty} \frac{\log \mathbb{P}[T^f > x]}{\log x} = -\alpha + 1.$$
A large job temporarily blocks the reduce queue input rate > service rate
2. If $\mathbb{P}[R < r - \lambda \mathbb{E}[R]\mathbb{E}[C]] = 1$ and $\alpha > 3$, then
 $\mathbb{P}[T^f > x] \sim \mathbb{P}[B > (1 - \rho)x],$
implying

$$\lim_{x \to \infty} \frac{\log \mathbb{P}\left[T^f > x\right]}{\log x} = -\alpha.$$

input rate < service rate

3. If
$$1 < \alpha \le k^*/(k^* - 1)$$
, $k^* \ge 2$ and $\mathbb{P}[r/(k^* - 1) > R \ge r/k^*] = 1$, $C \equiv 0$, then
$$\lim_{x \to \infty} \frac{\log \mathbb{P}[T^f > x]}{\log x} = -k^*(\alpha - 1).$$
 k^* large block t

 k^* large jobs temporarily block the reduce queue

Validation of criticality

Test bed

- 24 nodes 4 map + 2 reduce slots
- Linux 22.6.18-194.17.4.el5 kernel.
- Four 2.67GHz hex-core per node
- Intel Xeon X5650 CPUs with Hyperthreading capability
- 24GB memory + two 500GB
 Western Digital SATA hard drivers.
- All nodes on the same Top-of-Rack 1Gigabit Ethernet switch.

Table : Composition of the job flow that is similarto the Facebook workload

				1	
Group	Benchmark	Input Size	Job (#)	Reduc	ceTasks
				Test-1	Test-2
1	Wordcount	64 MB	330	1	1
2	Termvector	128 MB	109	4	4
3	Invertedindex	256 MB	36	8	18
4	Termvector	512 MB	16	12	24
5	Invertedindex	1GB	5	12	32
6	Terasort	2GB	4	16	46
7	Adjancylist	4GB	3	16	46
8	Sequencecount	8GB	2	20	46
9	Sequencecount	16 GB	1	20	46
		Total Jobs	506	1	1

- Each job under Test 2 runs faster than under Test 1 in a standalone environment
- On contrary, job execution times under Test 2 are much worse than Test 1 in a shared environment

MASCOTS 2015

DynMR for IBM Platform Symphony Performance issues

Macroscopic

- Difficulty in selecting optimal performance parameters (reduce #, MR ratio, slow-start); Auto-tuning (similar to star-fish) is also difficult
- No flow control for fetching data (cause under/over utilization of the fetch threads)
- Selfish users can monopolize the cluster by running many long reduce tasks; Unfairness to small jobs
- Unfair (YARN emphasizes fairness by assuming a single task type, MapReduce has both map and reduce)

Microscopic

- Long-tailed reduce tasks caused by data skew or heterogeneous computing nodes
- Reducer bundle several functional phases together and can only process the data of one partition; No pipelining between fetchers and mergers
- No pause-resume mechanism for ReduceTasks

How can we do better?
Wish list:

Preemption

Efficient context switching

Balance Map & Reduce resources Flow control

DynMR Design

★ Multiple ReduceTasks in a progressive queue share a single JVM

Guiding principle

- **1** Use fine-grained reduce tasks (smaller partitions)
- **2** Delicately schedule tasks in refined time scales
- 3 Efficient task context switching

DynMR adaptively interleaves partially-completed ReduceTasks and backfills MapTasks

- When?1 Detect-and-yield: identify best time points to switch tasks
- How 2 Flow control: assemble multiple tasks into a progressive queue, to form a "bigger task"
- What 3 Segment manager

about

data?

- 1 Manage data segments of multiple tasks
- 2 Extract merge threads as standalone services

DynMR High Level Architecture

DynMR Execution Example

Experiments – Single Job

 Table.
 5T Terasort configurations

Parameter	Value
io.sort.mb	650
io.sort.factor	100
mapred.job.reduce.input.buffer.percent	0.96
mapred.job.shuffle.merge.percent	0.96
mapred.job.shuffle.input.buffer.percent	0.8
mapred.compress.map.output	true
mapred.map.output.compression.codec	Lz4Codec
mapred.output.compression.type	BLOCK
mapreduce.job.intermediatedata.checksum	false
JVM heap -Xmx -Xms	1000m

Table. Optimal configuration for the original system

Parameter	Value	
map/reduce slot ratio	2:1	
mapred.reduce.slowstart.completed.maps	0.25	
mapred.reduce.tasks	256	

Default parameter values are: 1:1, 0.05, 384.

Experiments – Single Job

service rounds and # tasks in a progressive queue (skewed data) More Small ReduceTasks in

Experiment – Multiple Jobs

Group	Job name	Input data	Task # (m,r)	Job #
1	Histogram-movies	9.7GB	(75,10)	60
2	Grep '^ $a[a-z]*$ '	31.1GB	(235,15)	40
3	Histogram-ratings	46.5GB	(359,20)	30
4	Inverted-index	52.3GB	(390,25)	25
5	Word-count	66.1GB	(498,30)	10
6	Sequence-count	99.3GB	(749,90)	3
7	Adjancy-list	29.1GB	(313,100)	2

Summary

- MapReduce systems
- Starvation problem

Solutions:

- Coupling scheduler
- Preemption mechanism
- DynMR

Performance Models

- Overlapping Tandem Queue
- Online scheduling
- Heavy tail analysis

Research Activities on MapReduce

Coupling scheduler for Hadoop

- Infocom 2012, Sigmetrics 2012, Infocom 2013, Cloud 2013
- Pre-emptive scheduler for Hadoop
 - Efficient pause/resume mechanism for Reduce tasks
 - Improves fairness & reduces execution time
 - ICAC 2013, Sigmetrics 2014

DynMR: dynamic task interleave for Symphony

- Interleave Map and Reduce tasks for Platform Symphony product
- Improve Terasort speed to 1.7x
- EuroSys 2014

Online parameter tuning

- Adjust parameter settings (cpu, memory) online for better performance
- HPDC 2014

Performance modeling & capacity planning

- Overlapping tandem queue model & algorithm analysis
- IFIP Performance 2013
- Capacity planning: given a target execution time, determine number & type of VMs, number of reduce tasks per VM MASCOTS 2015

Thank You!