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Big Data Systems

» Characteristics of Big Data Systems
= Volume
= Variety
= Velocity
= Variability
= Veracity
= Complexity
» Examples
= Storage: HDFS, GFS, ...
= Processing: MapReduce, Spark, Hive, ...
= NoSQL stores:

e Column: Cassandra, Hbase, ...
e Document: CouchDB, DocumentDB, MongoDB, ...
e Key-value: MemcacheDB, Redis, Aerospike, ...

e Graph: Neo4J, InfiniteGraph, OrientDB, Virtuoso, Stardog, ...

e Multi-model: Alchemy Database, CortexDB, ...
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MapReduce Systems

» Commonly used in Big Data analytics
= By Facebook, Yahoo, Google, TaoBao, ...

» Simple workloads
= Word count, grep, sort, sampling, ...

» Complex workloads

= Nutchlndexing, PageRank, Bayesian classification, K-means
clustering, log analyzer, simulation, ...

= SQL like queries (Hive, Jaq|l, ...) compiled to DAG of
MapReduce jobs, ...

» Map heavy

= Word count, grep, sampling, ...

» Reduce heavy
= Sort, queries, ...

» Data (I/0O) heavy
= Sort
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MapReduce overview

Simplified MapReduce Job
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Map Reduce Modeling & System Optimization
» Goal

= |dentify inefficiencies in MapReduce mechanisms & fix them
= |mprove the scheduling mechanism

= Performance modeling based approach for capacity planning
of MapReduce applications

» Our past work

= Worked on both Hadoop & IBM Platform Symphony
= |nefficiencies:
e Reduce starvation, improve data locality, avoid scheduling delay
= Better scheduling & memory management
e Pause/resume for reducers, task interleaving
= Performance modeling and capacity planning
e Benchmarking on Symphony clusters for representative benchmarks

e Gray box performance models to

— capture perf metrics (e.g. completion time) as a function of job & system
parameters (e.g. data size, cluster size, # of map tasks & reduce tasks, ...)

e Help users determine required capacity setting for a target level SLA
= Deliver capabilities to IBM Cloud products and services
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Scheduling: heartbeat mechanism

~ MapReduce
S Job o

JobTracker

Task assignment

Slave node Slave node Slave node

TaskTracker TaskTracker TaskTracker

| A scheduler is critical for good performance in presence of
» multiple jobs

' 1) >25,000 MapReduce jobs/day (Facebook 2010)

' 2) Short jobs after large ones (trace study)

________________________________________________________________
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Scheduling is Not Easy!

» Complexities

= Multiple phases for each job
= Multiple resources ( cpu, or I/O, or network ) may be stressed
®" Fork and join feature for map/copy/shuffle phase

= Jobs with different characteristics
e Map heavy, reduce heavy, ...
= Move computation vs move large amount of data

= May not be work conserving

» Many Existing Schedulers (e.g. Fair)

= Lack of cooperation between map and reduce tasks

e Most existing work only optimizes the scheduling of map tasks or
reducers independently

= Dependence between map and reduce causes starvation
= No consideration of Reduce task locality (which depends on
map task allocations)
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Existing work

» Fair (Facebook)
= Ensure a minimum number of slots to a job (fair for maps)

» Quincy and Mantri for Dryad (Microsoft)
" Support agraph represented data processing model (DAG - direct
acyclic graph)
» Capacity (Yahoo)

= Support for multiple queues each with a fraction of capacity; a job
Is submitted to a queue

» Others
" LATE - scheduling speculative tasks
= Delay —improve data locality
= Deadline oriented schedulers

» Research at IBM

" FLEX —add-on module to Fair to optimize a number of metrics
= M3R - Main Memory MapReduce engine in X10
= Platform Computing
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Starvation problem

Difference between map and reduce

= Map: small and independent, run in parallel

= Reduce: long (fetch/shuffle — sort/merge — reduce)
e Launched in a greedy manner
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Real experiment
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» If only Job 2’s reduce could start earlier ...
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Scheduler design

» Coupling: launch reduce tasks according to the progress of
finished map tasks

= Reduce starvation

» Wait scheduling for reduce: place reducers close to the
“centrality” of the intermediate data on the tree topology by
skipping some received heartbeats

= Reduce data movement (improve data locality for reduce)
» Random peeking for map: allow launch map task on remote node
= Avoid scheduling delay (in large clusters)

receive a |
heartbeat

reduce progress
> map progress

schedule reducers
Wait Scheduling

A 4

schedule mappers
Random Peeking Scheduling

MASCOTS 2015 11



Coupling to mitigate starvation
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Starvation time
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» Experiment

m 22 jobs: map heavy (Grep, QuasiMonteCarlo), reduce heavy (sort),
small, large ...

= Repeat 5 times

= Coupling scheduler reduces starvation time
Starvation for Coupling

Reduced starvation

Starvation for Fair

JOB SEQUENCE

JoblID Job Time M R\ Sr | S5¢
01 Grep [1-5]* randomInput 0| 148 15 [\0.0 | 0.07
02 Grep [5-9]* randomInput 30 | 148 15 | p0 | 0
03 QuasiMonteCarlo 150 5 1 [[6e.4 [J0.0 20k
04 WordCount randomInput05 170 8 1 f4.04|/0.0
05 Grep [2-6]* randomInput05 190 8 2] 391y 0.0
06 Grep [3-6]* randomInput05 210 8 20 28Y 0.0
07 Grep [4-6]* randomInput05 230 8 3 2.8§ 0.0
08 | Grep [a-hl[a-z]* wikilnput 470 | 427 | 15| 0.0 | 022 157
09 Grep [a-g][a-z]* wikilnput 500 | 427 15§ 0.0§ 0.0
10 Sort randomPairl 800 | 224 | 27} 49 ) 4.5 &)
11 Grep [1-2]* randomInputl0 860 15 S) 8.3 09 ::
12 Grep [1-3]* randomInput03 380 8 3| 8.6) 0.6 = 10
13 Grep [6-9]* randomInput05 S00 8 2 84§ 0.2
14 Sort randomPair3 1020 64 | 27 | 53] 3.5
15 Grep [3-8]* randomInput20 1140 30 2 | 1.OJ\ 0.0
16 WordCount randomInput10 1440 | 15 1 \0.1/ [\0.0]
17 Sort randomPair2 1710 [ 352 | 27 [} [ %.¢ 5
18 QuasiMonteCarlo 2110 15 1| 03] 00
19 Grep [1-5]* randomInput05 2125 8 3 (00|00
20 Sort randomPair3 2245 64 | 27 [ 0.5 | 1.1
21 RandomWTriter 2365 | 150 0| 00| 00
22 | QuasiMonteCarlo 2485 | 10 | 1 |[NIABCOTS 201];
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Larger, more realistic experiment
Test bed

One master node and 62 slave nodes; each node has 4 cores (2933MHz,
32KB cache size),

6GB of memory and 72GB of disk.

Set 4 map slots and 2 reduce slots for each node.

Compare job processing times distribution ( 200 jobs )
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21.3% improvement in average job processing time
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It's all good and cool and dry so far.

But, what about a MODEL?

One does not get to present qf . e
MASCOTS without showing a MODEL | ™

Let's get wet |

Copy/Shuffle ®g
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Map slots

Reduce slots

Queueing model & analysis
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job?2
jobl
job?2
job3

Overlapping Tandem Queue

input map phase l reduce phase
J2task0 7 8 5
J1ltaskl
J2taskl | ES%
J3tasko >< ‘
/> I
—3(
. mapphase shuffle phase
jobs —!9 m ........ > DD@
(not tasks) \ )

shuffle phase
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Overlapping Tandem Queue
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Difference from classical models

» Overlapping tandem queue
= Fluid model: big data s like fluid!

» Tandem queueing model
= No overlapping
= Usually Poisson arrivals
= Usually independent exponential service at each station

» Flow shop model
= No overlapping
= Batch jobs
= Focus on non-preemptive scheduling and makespan
criterion
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Model parameters

Reasonable assumption when each job has more tasks than machines.

U, = total processing capacity of all map slots normalizing
U,= total network capacity between map slots and reduce slots ,Lt1=1, /1221.
size of job-i | : service time: x; for map phase,
Y. y; for shuffle phase

can be estimated in practice:

(a) Run a few map tasks of job-i.
(b) Linear prediction based on task time and intermediate data size.

; map phase shuffle phase !
jobs ——> DDD@ ........ > DDD@ ——> reduce phase
\ ) !

s.t. progress, (Job-1) > progress,(job-1)
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Online scheduling algorithm:
MaxSRPT

Focus on “finishing small jobs early”.

time to go through an idle system

Algorithm. Both stations work on the jobs using SRPT based on max(x;(t), y;(t))
subject to data availability.

How good is it?

Not more than 2

Theorem. Denote @ = max; max(x;/y;,y;/x;). The algorithm is 2a/(1 + «)-
speed optimal.

== Better for “balanced jobs™
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Online scheduling algorithm:
SplitSRPT

Focus on ‘“‘keeping the shuffle phase busy”'.

Mix map-heavy job and shuffle-heavy job.

Algorithm. Denote f = min; max(x;/v;, y;/x;). Split the capacity of the map
station so that L.y, : tme = 1 : B. Split the capacity of the shuffle station so that
ls1 : ps2 = B : 1. For the new arrival Jy, update S1 = S1 U {Jx} if xx/yx > 1
and Sy = So U{Jir} if xx/yr < 1. Run jobs in S1 by SRPT (map size) using [im2

and |1s5. Run jobs in So by SRPT (shuffle size) using [1.,1 and Lis;.

=

—T

7

L

=

)

Theorem. Denote 8 = min; max(x;/y;, y;/x;). The algorithmis (1+1/5)-speed

optimal.

:{> Better for ““‘unbalanced jobs™

Not more than 2
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Queueing model

= Ai-—arrival interval = Ri—#of reducers of job |

Poisson process specified by users

= Bi —map service of job i ™ Task progress constraint
O (1) <O (1)

Power law
MapTask W Copy/shufle C/
B. (@ Reduce phase pJ
| Z ] Available slot
1 —
T =
i [
R » Output
Job submission % o mﬂ % P
ReduceTask |l (Cij, DiJ) 1< j<R
_

0., () <O, (t)
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Heavy-tailed workload characteristics

S. Kavulya, et al. An analysis of traces from a production mapreduce cluster, CCGRID '10

B, -i.i.d. map service is regularly varying with index «

P[B > x]=1(X)/x%,x>0,a >1
I(X) is slowly varying

lim, _ 1(AX)/1(x) =1L, A1>0

X—>00

108, 106 -
§ 1054 2105 A
= 104 2 1041
2 103 S 103
2 ] @
= 102/ Q 102 -
Z 101 S 10-
= log P[B > 1]
1 ———————————— 1 102 1093 104 ams 1 — —
1 10 102 10% 104 108 1 10 102 103 104 105 108
Number of Tasks Input Size (GB) |Og t
(a) Number of tasks (b) Input Size
Figure : Power-law distribution of jobs (Facebook) in the
number of tasks and input sizes. Power-law exponents are
1.9 and 1.6 when fitted with least squares regression.

G. Ananthanarayanan, et al. PACMan: Coordinated\/llﬂpé%gg-[?gc%%ﬁor Parallel Jobs, NSDI '12 27



Criticality phenomenon in heavy tails

If AE[B]<1, AE[R]E[C]<T, a>1 then, for Fair Scheduler

. IfP[R > r — AE[R]E[C]] > 0, then

logP [TY >
lim 08 [ x] =—a + 1.
T—% 00 lOg T

IfPIR <r—AE[R]E[C]] =1 and a > 3, then
P [T/ > 2| ~P[B > (1-p)al,

implying
logP [T7 > x
lim 2P | d

T— OO ]Dg.t’-

= —k.

A large job temporarily
blocks the reduce queue

input rate > service rate

Input rate < service rate

Fl<a<k/(k—1), k" >2 and Plr/(k* — 1) >

R>r/k"] =1, C =0, then

T f
i (8P T > 2] ey

T— 0O lClg T
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Validation of criticality

. Table : Composition of the job flow that is similar
« Test bed to the Facebook workload

’
= 24 nodes — 4 map + 2 reduce slots S
] Group | Benchmark | Input Size | Job (#) | RgduceTakks|
= Linux 22.6.18-194.17.4.el5 kernel. Tost-1] TestR
1 Wordcount 64MB 330 L1 1y
= Four 2.67GHz hex-core per node 2 Termvector 128MB 109 I4 4,
® |ntel Xeon X5650 CPUs with Hyper- 3 Invertedindex 256MB 36 ] 8 18 "
th di bilit 4 Termvector 512MB 16 p 12 24 1
reading capability 5 Invertedindex 1GB 5 12 32 H
= 24GB memory + two 500GB 6 ATleraSOll‘t igg %l 1 ig jg I
.. . 7 Adjancylist 4G : y 16 46
Western Digital SATA hard drivers. S [Sequencecount|  SGB 5 0 1
™ A” nodes on the same Top_of_Rack 9 Sequencecount 16GB 1 0 46 I
. . . Total Jobs 506 \
1Gigabit Ethernet switch. oo e L . /'
N -

** Results match strikingly

well with analysis

= Each job under Test 2 runs faster
than under Test 1 in a stand-
alone environment

= On contrary, job execution times
under Test 2 are much worse
than Test 1 in a shared
environment 107

P[T>1]

10° 10°
Time t (second)
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DynMR for IBM Platform Symphony

» Performance issues

= Macroscopic

e Difficulty in selecting optimal performance parameters (reduce #,
MR ratio, slow-start); Auto-tuning (similar to star-fish) is also
difficult

e No flow control for fetching data (cause under/over utilization of
the fetch threads)

e Selfish users can monopolize the cluster by running many long
reduce tasks; Unfairness to small jobs

e Unfair (YARN emphasizes fairness by assuming a single task
type, MapReduce has both map and reduce)
= Microscopic
e Long-tailed reduce tasks caused by data skew or heterogeneous
computing nodes

e Reducer bundle several functional phases together and can only
process the data of one partition; No pipelining between fetchers
and mergers

e No pause-resume mechanism for ReduceTasks
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How can we do better?
»\Wish list:

= Preemption
=» Efficient context switching

= Balance Map & Reduce resources
= Flow control

MASCOTS 2015
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DynMR Design

* Multiple ReduceTasks in a progressive queue
share a single JVM

Guiding principle
1 Use fine-grained reduce tasks (smaller partitions)
2 Delicately schedule tasks in refined time scales
3 Efficient task context switching

DynMR adaptively interleaves partially-completed
ReduceTasks and backfills MapTasks

When?1 Detect-and-yield: identify best time points to switch
tasks

How 72 Flow control: assemble multiple tasks into a progressive
manys  queue, to form a “bigger task”

What S S€gment manager

about 1 Manage data segments of multiple tasks
data? 2 Extract merge threads as standalone services
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DynMR High Level Architecture

Master node

Progressive Progressive
«— Queue (C++) g R < Queue (C++)

MapTask Flow Control] MapTask
— P [ /

00

0000

ReduceTask Session Manager ReduceTask
— \(Job Tracker C++)) g/
A X .
7 \.
Slave node Instance |/ cControl& .| Instance
Manager Messages Manager :
- (C++) (C++) .
Service Instance v 7 7 . Service Instance
IVM JVM
Heap | | | Heap | | . !
O [Detect & Yield O [Detect & Yield
L Segment L Segment
------- Manager Manager
) Y
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DynMR Execution Example

_______ » Data flow Memory-to-disk ,| Disk-to-disk
merg merge
JIVM 1 Map Map (% Fetch Map Map | Fetch Map : Fetch | Reduce
e : 'I"v; -- e e == - -

TVM 2 Map | Map :__..--"cl':etch ; Map | Map | Map | Fetch Map Fetch | Reduce

TVM 3 Map Fetch E:’:Map Map Fetch Map Map | Fetch Reduce

TVM 4 Map |Map | Map Fetch Map Map Map Fetch Reduce

Within a JVM
,}.Avai lable
I T N (Segment managea
< o | »Memory-to-disk| | Disk-to-disk
2 .,.f'lfetch threads P merge Merge
1 \ J
T
Remote 1] Standalone services
map output Memory
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Experiments — Single Job

Terasort

CPU utilization  |9User mSys% owaits |

100 4
90
80
70
60
50 9
40 H
30 H
20 H
10 4

A

i

Underused

Better utilization

5000

4500

4000

3500

3000

0840

New system

Table. 5T Terasort configurations

Parameter Value
io.sort.mb 650
io.sort.factor 100
mapred.job.reduce.input.buffer.percent 0.96
mapred.job.shuffle.merge.percent 0.96
mapred.job.shuffle.input.buffer.percent 0.8
mapred.compress.map.output true
mapred.map.output.compression.codec |Lz4Codec
mapred.output.compression.type BLOCK
mapreduce.job.intermediatedata.checksum| false
JVM heap -Xmx -Xms 1000m

Job execution time (seconds)

Shorter execution time

5T Terasort benchmar}/

--¢-- Original

1.8

1.6

1.4

1.2

1

0.8

< Na 5T skewed Terasort

—o— New

--¢-- Original [

1]

2500
0

500
ReduceTask number

1000

0.6
200

1200

ReduceTask number

2000

Table. Optimal configuration for the original system

Parameter Value
map/reduce slot ratio 2:1
mapred.reduce.slowstart.completed.maps| 0.25
mapred.reduce.tasks 256

Default parameter values are: 1:1, 0.05, 384.
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Experiments — Single Job

Terasort

Better utilization

CPU utilization  |9User mSys% owaits |

100 100 4
A
90 4 90 44
80 iL’ndemsed }_ 80
70 4 70 H L
60 4+ 60
50 1+ 50 +
40 40 H ———
30 4+ 30 b
20 44 20 H —
10 4 10 h
0 0
SLYRBS8B-2NRNYD IR BYS =L &
E8 88 838388888 2LV ITITITIT

New system

Job execution time (seconds)
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3500
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2500
0

Shorter execution time

5T Terasort benchmar}/

--¢-- Original

1.8

1.6

1.4

1.2

1

0.8

X1

\4 5T skewed Terasort

—o— New

----------- --¢-- Original [

1]

500 1000
ReduceTask number

0.6 i
200 1200

ReduceTask number

# service rounds and # tasks in a progressive gqueue
(skewed data)
Small ReduceTasks yield more often

pair input (GBytes)

ReduceTask key/value

0 50 100

150

Task yielding number

; ; 0
200 250 300

ReduceTask ID

pair input (GBytes)

ReduceTask key/value

s
(=]

L
=

L)
[=]

—
(=]

(=]

More Small ReduceTasks in

1 progressive queue
5T skewed Terasort with 2000 ReduceTasks

____________________________________

___________________________________

otal input (GByvles)
a progressive queue
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Experiment — Multiple Jobs

Table Job details

Group Job name Input data | Task # (m.r) | Job #
I Histogram-movies 0.7GB (75,10) 60
2 Grep "ala — z]x" | 31.1GB (235.15) 40
3 Histogram-ratings | 46.5GB (359.20) 30
4 [nverted-index 52.3GB (390.25) 25
5 Word-count 66.1GB (498.30) 10
6 Sequence-count 99.3GB (749.90) 3
7 Adjancy-list 290.1GB (313.100) 2

P[T<t]

; .
0 100 200 300 400 500 600 700 800
Job processing time: t
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Summary
» MapReduce systems

» Starvation problem

» Solutions:
= Coupling scheduler
= Preemption mechanism
" DynMR
» Performance Models
= Overlapping Tandem Queue

= Online scheduling
= Heavy tail analysis

MASCOTS 2015
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Research Activities on MapReduce

» Coupling scheduler for Hadoop
= Infocom 2012, Sigmetrics 2012, Infocom 2013, Cloud 2013

» Pre-emptive scheduler for Hadoop

= Efficient pause/resume mechanism for Reduce tasks
= Improves fairness & reduces execution time
= |CAC 2013, Sigmetrics 2014

» DynMR: dynamic task interleave for Symphony
= Interleave Map and Reduce tasks for Platform Symphony product

= Improve Terasort speed to 1.7x
= EuroSys 2014

» Online parameter tuning

= Adjust parameter settings (cpu, memory) online for better
performance

= HPDC 2014

» Performance modeling & capacity planning
= Qverlapping tandem queue model & algorithm analysis
= |FIP Performance 2013

= Capacity planning: given atarget execution time, determine

number & type of VMs, number of reduce tasks per VM
MASCOTS 2015 39



Thank You!
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