02/26/2020 – Palakh Mignonne Jude – Explaining Models: An Empirical Study Of How Explanations Impact Fairness Judgment

SUMMARY

The authors of this paper attempt to study the effect explanations of ML systems have in case of fairness judgement. This work attempts to include multiple aspects and heterogeneous standards in making the fairness judgements that go beyond the evaluation of features. In order to perform this task, they utilize four programmatically generated explanations and conduct a study involving over 160 MTurk workers. They consider the impact caused by different explanation styles – global (influence and demographic-based) as well as local (sensitivity and case-based) explanations, fairness issues including model unfairness and case-specific disparate impact, and the impact of individual difference factors such as cognitive style and prior position. They authors utilized the publicly available COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) data set for predicting risk of recidivism which is known to have racial bias. The authors developed a program to generate different explanation versions for a given data point and conducted an online survey style study wherein the participants were made to judge the fairness of a prediction based on a 1 to 7 Likert scale and had to justify the rating given by them.

REFLECTION

I agree that ML systems are often seen as ‘black boxes’ and that this truly does make gauging fairness issues difficult. I believe that this study conducted was indeed very useful in throwing light upon the need for more well-defined fairness judgement methodologies involving humans as well. I feel that the different explanation styles taken into account in this paper – influence, demographic-based, sensitivity, and case-based were good and helped cover various aspects that could contribute in understanding the fairness of the prediction. I found it interesting to learn that the local explanations helped to better understand discrepancies between disparately impacted cases and non-impacted cases whereas the global explanations were more effective in exposing case-specific fairness issues.

I also found interesting to learn that different regions of the feature space may have varied levels of fairness and fairness issues. Having not considered the fairness aspect of my datasets and the impact this would have on the models I build, this made me realize that it would indeed be important to have more fine-grained sampling methods and explanation designs in order to judge the fairness of ML systems.

QUESTIONS

  1. The participants involved in this study comprised of 78.8% self-identified Caucasian MTurk workers. Considering that the COMPAS dataset being considered in this study is known to have racial bias, would changing the percentage of the African American workers involved in these studies have altered the results? The study focused on workers living in the US, perhaps knowing the general judgement of people living across the world from multiple races may have also been interesting to study?
  2. The authors utilize a logistic regression classifier that is known to be relatively more interpretable. How would a study of this kind extend when it comes to other deep learning systems? Could the programs used to generate explanations be used directly? Has any similar study been performed with these kinds of more complex systems?
  3. As part of the limitations of this study, the authors mention that ‘the study was performed with crowd workers, rather than judges who would be the actual users of this type of tool’. How much would the results vary if this study was conducted with judges? Has any follow-up study been conducted?

One thought on “02/26/2020 – Palakh Mignonne Jude – Explaining Models: An Empirical Study Of How Explanations Impact Fairness Judgment

  1. Interesting point you raise in the second question, I know that DeepSHAP exists for interpreting some NN models. Of course interpreting DL is much more complex, but with the rise in the field of explainability and interpretability, we’re finding more resources for different models.
    To the best of my knowledge there are different approaches for each field, too. for example interpreting DL models for computer vision has different libraries than NLP (text based)… etc.

Leave a Reply