This work aims to design and evaluate a mixed-initiative approach to fact-checking by blending human knowledge and experience with the efficiency and scalability of automated information retrieval and ML. The paper positions automatic fact-checking systems as an assistive technology to augment human decision making. The proposed system fulfills three key properties namely model transparency, support for integrating user knowledge, and quantification and communication of model uncertainty. Three experiments were conducted using MTurk workers to measure the participants’ performance in predicting the veracity of given claims using the system developed. The first experiment compared users who perform the task with and without seeing ML predictions. The second compared a static interface with an interactive interface where the users were provided options to mend or override the predictions of the AI system. Results showed that the users were generally able to use the interface but this was of little use when the predictions were accurate. The last experiment compared a gamified task design with a non-gamified one, but no significant differences in performance were found. The paper also discusses the limitations of the proposed system and explores further research opportunities.
I liked the fact that the focus of the paper was more on designing automated systems that were user-friendly rather than focussing on improving prediction accuracy. The paper takes into consideration the human element of the human-AI interaction and focuses on making the system better and more meaningful. The proposed system aims to learn from the user and provide a personalized prediction based on the opinions and inputs from the user.
I liked the focus on transparency and communication. Transparent models help users better understanding the internal workings of the system and hence helps build trust. Regarding communication, I feel that conveying the confidence of the prediction helps the users make an informed decision. This is much better than a system that might have high precision but does not communicate the confidence scores. In cases where this system makes an error, the consequences are likely to be precarious since the user might blindly follow the prediction of the system.
The side-effect of making the system transparent was interesting. Not only would transparency lead to higher trust levels, but it would also help teach and structure the user’s own information literacy skills regarding the logical process to follow for assessing claim validity. Thereby, the system proposed truly leveraged the complementary strengths of the human and the AI.
- Apart from the three properties incorporated in the study (transparency, support for integrating user knowledge, and communication of model uncertainty), what are some other properties that can be incorporated to better the AI systems?
- The study aims to leverage the complementary strengths of humans and AI but certain results were inconclusive as noted in the paper. Besides the limitations enumerated in the paper, what are other potential drawbacks of the proposed system?
- Given that the study presented is in the context of automated fact-checking systems, what other AI systems can these principles be applied to?
I liked the focus on transparency as well. I agree that it definitely aids in a user in building trust of the system. Especially in case of AI based systems, I believe that lay users would benefit from more transparent systems as it enables them to truly make judgements about the system on their own instead of blindly piggybacking on ideas put forth by other people.