Summary
In this paper, the authors study the associated risk perception of human mental models to AI systems. For analyzing risk perception, they study 175 individuals, both individually and comparatively, while also factoring in psychological factors. Additionally, they also analyze the factors that lead to people’s conceptions or misconceptions in risk assessment. Their analysis shows that technologists or AI experts consider the studied risks as posing more threat to society than non-experts. Such differences, according to the author, can be utilized to define system design and decision-making.
However, most of the subjects agree that such system risks (identity theft, personal filter bubbles) were not voluntarily introduced in the system but were a consequence or side-effects of integrating some valuable tools or services. The paper also discusses risk-sensitive designs that need to be applied when the difference between public and expert opinion on risk is high. They emphasize on the integration of risk-sensitivity earlier in the design process rather than the current process where it is an after-thought of a deployed system.
Reflection
Given the recent usability of AI technologies in everyday lives (Tesla cars, Google Search, Amazon Marketplace, etc.), this study is very necessary. The risks do not just involve test subjects but a much larger populace that is unable to comprehend these technologies that intrude in their daily lives. These leave them vulnerable to exploitation. Several cases of identity theft or spam treachery have already taken victims due to lack of awareness. Hence, it is very crucial to analyze the amount of information that can reduce such cases. Additionally, a system should provide a comprehensive analysis of its limitations and possible misuse.
Google Assistant records all conversations to detect its initiation phrases “OK Google”. It depends on the fact that the recording is a stream and no data is stored except a segment. However, a possible listener to extract the streams and utilize another program to integrate them into comprehensible knowledge that can be exploited. Users are confident in the system due to the speech segmentation. However, an expert can see-through the given ruse and imagine the listener scenario just based on the knowledge that such systems exist. This knowledge is not entirely expert-oriented and can be transferred to users, thus preventing exploitation.
Questions
- Think about systems that do not rely or have access to user information (e.g. Google Translate, Duckduckgo). What information can they still get from users? Can this be utilized in an unfair manner? Would these be risk-sensitive features? If so, how should the system design change?
- Unethical hackers generally work in networks and are able to adapt to security reinforcements. Can security reinforcements utilize risk-sensitive designs to overcome hacker adaptability? What such changes could be thought of in the current system?
- Experts tend to show more caution towards technologies. What amount of knowledge introduces such caution? Can this amount be conveyed to all the users of a particular product? Would this knowledge help risk-sensitivity?
- Do you think the individuals selected for the task are a representative set? They utilized MTurk for their study. Isn’t there an inherent presumption of being comfortable with computers? How could this bias the study? Is the bias significant?
Word Count: 542