04/08/2020 – Ziyao Wang – CrowdScape: Interactively Visualizing User Behavior and Output

The authors presented CrowdScape, which is a system used for supporting the human evaluation of increasing numbers of complex crowd work. The system used interactive visualization and mixed-initiative machine learning to combine information about worker behavior with the worker outputs. This system can help users to better understand the crowd workers and leverage their strength. They developed the system from three points to meet the requirement of quality control in crowdsourcing: output evaluation, behavioral traces, and integrated quality control. They visualized the workers’ behavior, quality of outputs and combined the findings of user behavior with user outputs to evaluate the work of the crowd workers. This system has some limitations, for example, it cannot work if the user completes the work in a separate text editor and the behavior traces are not detailed enough. However, this system is still good support for quality control.

Reflections:

How to evaluate the quality of the outputs made by the crowdsourcing workers? For those complex tasks, there is no single correct answer, and we can hardly evaluate the work of the workers. Previously, researchers proposed methods in which they traced the behavior of the workers and evaluated their work. However, this kind of method is still not accurate enough as workers may provide the same output while completing tasks in different ways. The authors provide us a novel approach that evaluates the workers from outputs, behavior traces and the combination of these two kinds of information. This combination increases the accuracy of their system and is able to do analysis on some of the complex tasks.

This system is valuable for crowdsourcing users. They can better understand the workers by building a mental model of them. As a result, they can distinguish good results from the poor ones. In projects related to crowdsourcing, developers will sometimes receive a poor response by inactive workers. With this system, they can only keep the valuable results for their research, which may increase the accuracy of their models, get a better view of their systems’ performance and get detailed feedback.

Also, for system designers, the visualization tool for behavioral traces is quite useful if they want to get detailed user feedback and user interactions. If they can analysis on these data, they can know what kinds of interactions are needed by their users and provide a better user experience.

However, I think there may be ethical issues in this system. Using this system, the hits publishers can obtain workers’ behavior while doing the hits. They can collect mouse movement, scrolling, keypresses, focus events and clicks information of the user. I think this may raise some privacy issues and these kinds of information may be used for crimes. The workers’ computers would be risky if their habits are collected by crackers.

Questions:

Can this system be applied to some more complex tasks other than purely generative tasks?

How can the designers use this system to design interfaces which can provide a better user experience?

How can we prevent crackers from using this system to collect user habits and do attacks on their computers?

Leave a Reply