03/25/2020 – Ziyao Wang – All Work and No Play? Conversations with a Question-and-Answer Chatbot in the Wild

The authors recruited 337 participants with diverse backgrounds. The participants are required to use CHIP, a QA agent system, for five to six weeks. After which, they are required to do a survey about their use of the system. Then, the authors did data analytics on the survey results to find out the t kinds of conversational interactions did users have with the QA agent in the wild and the signals for inferring user satisfaction with the agent’s functional performance, and playful interactions. Finally, the authors characterized users’ conversational interactions with a QA agent in the wild, suggested signals for inferring user satisfaction which can be used to develop adaptive agents and provided nuanced understanding of the underlying functions of users’ conversational behaviors, such as distinguish conversations with instrumental purpose from conversations with playful intentions.

Reflections:

The QA agent is an important application of AI technology. Though this kind of system was designed to work as a secretary who knows everything which can be reached through Internet, and it did well in all the conversations which serve primarily instrumental purposes, it can perform badly in conversations with playful intentions. For example, Siri can help you call someone, help you schedule an Uber and help you search the instructions for your device. However, when you are happy with something and sing a song to it, it is not able to understand your meaning and may disappoint you by response to you that it cannot understand you. This is a quite hard task, as each human has its own habits and AI can hardly distinguish whether the conversation has playful intention, or the conversation is about working purpose. As working purpose conversations are more important, the systems pretends to assume most of the conversations are with instrumental purposes. This assumption will ensure that no instrumental purposed conversation will be missed, however, it may decrease users’ satisfaction about the system when user want to play with the agent. Though developers understand this fact, it is still hard to let AI system to distinguish the purpose of the conversation.

This situation can be changed with the findings in this paper. The results in this paper show us about how to distinguish the purpose of the conversations and evaluate whether the user is satisfied with the conversation or not. As a result, the agent system can adapt itself to meet users’ needs and increase users’ satisfaction. So, developers of QA agent systems should consider the characterized forms of conversational interactions and the signals in conversational interactions for inferring user

Satisfaction in their future development. I think the QA agents in the future will become more adaptive according to users’ habits and user satisfaction of the agents will increase.

Questions:

How we can make use of the characterized forms of conversational interactions? Are there any suggestions about what the agent should response in each kind of conversation?

With the signals in conversational interactions for inferring user satisfaction, how can we develop a self-adaptive agent system?

Do the young people use QA agent the most compared with other groups of people? What kinds of participants should also be recruited to extend the coverage of the findings?

One thought on “03/25/2020 – Ziyao Wang – All Work and No Play? Conversations with a Question-and-Answer Chatbot in the Wild

  1. I agree with your comment that QA agents are one of the most important applications of AI. It is also true that most of the conversational agents available are not full proof and end up often frustrating the user with “I don’t understand the question” or statements similar to it. Finding the purpose of the conversations and then the subsequent evaluation will no doubt help, but we need to constantly keep on re-training the model to learn from the feedback.

    Additionally, I found it interesting that you pointed out if QA agents are used mainly by younger people. That would indeed be a unique study to find out why older people refrain from using such agents or if they use them what kind of system or features they find easy to use.

Leave a Reply