Summary
In this paper, the authors discuss the problem of maintaining order in open-edit information corpora, specifically Wikipedia here. They start with explaining the near-immunity of Wikipedia to vandalism that is achieved through a synergy between humans and AI. Wikipedia is open to all editors and the team behind the system is highly technical. However, the authors study on its immunity dependence on the community’s social behavior. They show that vandal fighters are networks of people that identify the vandals based on a network of behavior. They are supported by AI tools but banning a vandal is yet not a completely automated process. The process of banning a user is a requires individual editor judgements at a local level and a collective decision at a global level. This creates a heterogeneous network and emphasizes on decision corroboration by different actors.
As given in the conclusion, “this research has shown the salience of trace ethnography for the study of distributed sociotechnical systems”. Here, trace ethnography combines the ability of editors with data across their actions to analyze vandalism in Wikipedia.
Reflection
It is interesting to see that Wikipedia’s vandal fighters include such a seamless cooperation between humans and AI. I think this is another case where AI can leverage human networks for support. The more significant part is that the tasks are not trivial and require human specialization and not just plain effort. Also, collaboration is a significant part of AI’s capability. Human editors analyze the articles in the local context. AI can efficiently combine the results and target the source of these errors by building a heterogeneous network of such decisions. Further, human beings analyze these networks to ban vandals. This methodology applies the most important abilities of both humans and bots. The collaboration involves the best attributes of humans, i.e; judgement and of AI, i.e; pattern recognition. Also, it effectively utilizes this collaboration against vandals who are independent or small networks of mal-practitioners who do not have access to the bigger picture.
The methodology utilizes distributed work patterns for accomplishing different tasks of editing and moral agency. Distributing the work enables involvement of human beings on trivial tasks. However, combining the results to attain logical inferences is not humanly possible. This is because the vast amount of data is incomprehensible to humans. But, humans have the ability to develop algorithms that the machine can apply at a larger-scale to get such inferences. However, the inferences do not have a fixed structure and require human intelligence to retrieve desired actions against vandalism. Given that, most of the cases of such vandalism are by independent humans, a collaborative effort by AI can greatly turn the odds for vandal fighters. This is because AI aids humans by utilizing the bigger picture incomprehensible to just humans.
Questions
- If vandals have access to the network, will they be able to destroy the synergy?
- If there’s more motivation like political or monetary gain, will it give rise to a kind-of mafia network of such mal-practitioners? Will the current methodology still be valid in such a case?
- Do we need a trust-worthiness metric for each Wikipedia page? Can the page be utilized as reference for absolute information?
- Wikipedia is a great example of crowd-sourcing and this is a great article for crowd-control on these networks. Can this be extended to other crowd-sourcing softwares like Amazon MT or information blogs?