Workshop Research Methods and Statistical Analysis

Session 1 - Introduction

Sandra Poeschl

08.04.2013

Page 1

Agenda

- Empirical Research Process
- Research Designs
- Effect Sizes & Power Analysis

EMPIRICAL RESEARCH PROCESS

08.04.2013

Page 3

Research Process

Research Process

RESEARCH DESIGNS

08.04.2013

Page 6

Research Design in General

Design Characteristic	Design Alternatives
Philosophy of science approach	Qualitative study Quantitative study Mixed Methods study
Goal	Basic Research study Applied Research study
Purpose	Theoretical Study / Research review Methodological Study Empirical Study •Original Study •Replication Study
Data Basis	Primary analysis Secondary analysis Meta-analysis

Research Design in General

Design Characteristic	Design Alternatives
Interest	exploratory study population descriptive study explanatory study
Treatment of Groups	experimental study, true experiment quasi-experimental study non experimental study
Location	laboratory study field study
Frequency of measurements	cross-sectional design repeated measurements design longitudinal design
Number of research objects	single participant study group study •sample study •population study

Experimental Designs

- Testing for differences between groups
- experimental study
 - At least 2 groups
 - Randomization
 - experimental manipulation of treatment (independent variables, causes)
 - Measurement of dependent variable/s (effects).
- quasi-experimental study
 - No randomization, existing groups

Causal influences

- Independent variable(s) → dependent variable(s)
- internal validity: results allow clear causal interpretation of effects
- Exclusion of alternative explanations
- Confounder (influences on dependent variable beyond independent variables)
 - Subject-related confounders (randomization)
 - Study-related confounders (standardization, (double-) blind trials)

Common variants

- 2-Groups (Treatment / Control):
- No sound Spatial sound

- 1 IV, dichotomous,1 DV, metric (univariate)
- Cross-sectional or repeated measures
- t-Test (independent / dependent samples)

IV: sound (no sound/spatial sound DV: time to complete a orientation task

Common variants

FOR 20

- One-way, univariate:
 - 1 IV, more than 2levels (nominal),1 DV (metric)
 - Cross-sectional or repeated measures
 - One-way, univariate
 ANOVA (repeated
 measures)

IV: FOR (20 degrees/90 degrees/270 degrees) DV: error rate in search task

FOR 90

FOR 270

Common variants

- Multi-factorial, univariate:
 - At least 2 IV,
 1 DV, metric
 (univariate)
 - Cross-sectional or repeated measures
 - Interaction effects
 - Multi-factorial, univariate ANOVA

Multivariate

At least 2 DV (metric), One- and multi-factorial MANOVA

	No head- tracking	Head- tracking
No stereoscopy		
stereoscopy		

IV 1: head-tracking (yes/no) IV 2: stereoscopy (yes/no) DV: error rate in spatial judgement task

08.04.2013

EFFECT SIZES & POWER ANALYSIS

08.04.2013

Page 14

A problem with significance tests (NHST)

Novice	Experts
2	2
3	3
4	4
1	1
2	2
3	3
2	2
3	3
4	4
5	4
M = 2.90	M = 2.80
SD = 1.20	SD = 1.03
n = 10	n = 10

- IV: Experience
- DV: Error rates in visualization task
- $H_1: \mu_{no experience} > \mu_{experience}$
- $H_0: \mu_{no experience} \le \mu_{experience}$
- n = 20: $t_{emp (df=18)} = .20$, p = .42
- Can we have a minimal effect that is statistically significant?

A problem with NHSTs

Novice	Experts	
2	2	
3	3	
4	4	
1	1	
2	2	
3	3	
2	2	
3	3	
4	4	
5	4	
M = 2.90	M = 2.80	
SD = 1.20	SD = 1.03	
n = 10	n = 10	

- n = 20: t(df = 18) = .20, p = .42 n.s.
- n = 40: t(df = 38) = .29, p = .38 n.s.
 - n = 80: t(df = 78) = .42, p = .33 n.s.
 - n = 160: t(df = 158) = .59, p = .27 n.s.
- n = 320: t(df = 318) = .84, p = .20 n.s.

 NHSTs will always lead to significant results if n is large enough, even when effects are minimal and of no practical significance!

Effect size

- Reporting statistical significance (test statistics, p-value) + standardized effect size
- Statistically significant results do not automatically have to be of practical relevance.
- Practical relevance has to be decided with regards to content.
- Absolute effect sizes are hard to compare across studies (mean difference of 0.8 errors between groups ...) → standardized effect sizes

Some standardized effect sizes

Type of effect size measure	Small effect	Medium effect	Large effect
Difference between 2 groups Cohen's d	0,2	0,5	0,8
Correlations Bivariate Pearson's correlation r	0,10	0,3	0,5
Variance explained (Partial) Eta Squared n²	0,01	0,06	0,14

Cohen, 1988

Another problem with NHSTs

- H1: Higher simulation fidelity leads to higher number of saves in a VR goalkeeper training simulation.
- Could we have an effect of practical relevance without statistical significance?

	Low SF	High SF
Μ	2.40	2.70
SD	.94	.98
n	20	20

t(df = 38) = .99, p = .33Mean difference = .30 SE of difference = .30

Another problem with NHSTs

- H1: Higher simulation fidelity leads to higher number of saves in a VR goalkeeper training simulation.
- We can have medium and large effects without statistical significance, if n is too small!

	Low SF	High SF
Μ	2.40	2.70
SD	.94	.98
n	20	20

t(df = 38) = .99, p = .33Mean difference = .30 SE of difference = .30

d = .31

Power

- Do a power analysis if you only find nonsignificant effects
- Even strong effects fail to gain statistical significance if the sample size is too small.
- Power (1-β) is the probability to find a significant population effect.
- Power should be at least 80 % (1- $\beta \ge .80$).
- G*power for power analysis

http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/

Power Analysis with g*power

Power

- Power (1-β) increases with
 - Increase of sample size n
 - Increase of population effects
 - Increase of significance level
- We can't influence population effects and can't change the significance level.
- Controlling power \rightarrow controlling sample size

In a nutshell

- Small effects can be statistically significant (especially when n is large): report and classify standardized effect sizes.
- Relevant effects can be non-significant: do a post-hoc power analysis with g*power. If power is less than 80 %, the results are not meaningful. Studies should be replicated with larger samples.

Required sample size

- To avoid problems with the NHST, we should take required sample sizes into account before data collection.
- Required sample sizes are construed to detect a priori determined effect sizes (small, medium, large) with test power of $1-\beta = .80$ and a significance level of $\alpha = .05$.
- You can use g*power to compute required sample sizes.

Example SF

- H1: Higher simulation fidelity leads to higher number of saves in a VR goalkeeper training simulation.
- What n do we need to detect an effect of d = .30 (small to medium)?

	Low SF	High SF
Μ	2.40	2.70
SD	.94	.98
n	20	20

t(df = 38) = .99, p = .33Mean difference = .30 SE of difference = .30

d = .31 $1 - \beta = .25$

Example SF

Further Reading

- Kantowitz, B., Roediger, H., & Elmes, D. (2008). *Experimental Psychology*, International Edition (9th ed.). Andover: Cengage Learning Emea.
- Marques de Sá, J. P. (2007). Applied Statistics Using SPSS, STATISTICA, MATLAB and R. (2nd ed.) Berlin: Springer.
- Shadish, W. R., Cook, T. D., & Campbell, D. T. (2001). Experimental and Quasi-Experimental Design for Generalized Causal Inference. Wadsworth.

