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ABSTRACT
A rapid increase in the quantity of data available is allowing all
fields of science to generate more accurate models of multivari-
ate phenomena. Regression and interpolation become challenging
when the dimension of data is large, especially while maintain-
ing tractable computational complexity. This paper proposes three
novel techniques for multivariate interpolation and regression that
each have polynomial complexity with respect to number of in-
stances (points) and number of attributes (dimension). Initial results
suggest that these techniques are capable of effectively modeling
multivariate phenomena while maintaining flexibility in different
application domains.
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1 INTRODUCTION
Regression and interpolation are problems of considerable impor-
tance that find applications across many fields of science. Pollution
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and air quality analysis [8], energy consumption management [11],
and student performance prediction [4] are a few examples of inter-
disciplinary applications of multivariate regression for predictive
analysis. As discussed later, these techniques can also be applied to
prediction problems related to high performance computing (HPC)
file input/output (I/O), Parkinson’s patient clinical evaluations [13],
and forest fire risk assessment [3].

Multivariate interpolation is formally defined when there exists
some function f : Rd → R and a set X of n points in Rd along with
associated response values f (x ) for all x ∈ X . The problem is to
construct an approximation f̂ : Rd → R such that f̂ (x ) = f (x ) for
all x ∈ X . It is often the case that the form of the true underlying
function f is unknown, however it is still desirable to construct an
approximation f̂ with minimum approximation error at y < X .

Multivariate regression is often used when the underlying func-
tion is presumed to be stochastic, or stochastic error is introduced
in the evaluation of f . Hence, multivariate regression relaxes the
conditions of interpolation by minimizing the error in f̂ at x ∈ X
while maintaining some parametric form with parameters P . This
can be written as minP | | f̂ (X ) − f (X ) | |, where f (X ) is a vector of
f (x ) for all x ∈ X and | | · | | is an appropriate measure. The difficult
question in the case of regression is often what parametric form
to adopt for any given application. This paper proposes basis func-
tions with overlapping regions of support as the general parametric
form.

As the dimension of data increases, the number of possible inter-
actions between dimensions grows exponentially. Quantifying all
possible interactions becomes intractable and hence beyond three-
dimensional data, mostly linear models are used. That is not to
say nonlinear models are absent, but nonlinearities are often either
preconceived or model pairwise interactions between dimensions
at most. Similarly, higher order models of single variables can be
generated from the techniques proposed in this paper, however
only first-order interactions between variables are considered.

Regression and interpolation have a considerable theoretical
base in one dimension [2]. Splines in particular are well understood
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Figure 1: 1D linear (order 2) and quadratic (order 3) box
splines with direction vector sets

(
1 1

)
and

(
1 1 1

)
respec-

tively. Notice that these direction vector sets form the B-
Spline analogues, order 2 composed of two linear compo-
nents and order 3 composed of 3 quadratic components (col-
ored and styled in plot).

Figure 2: 2D linear (order 2) and quadratic (order 3) box
splineswith direction vector sets

(
I I

)
and

(
I I I

)
respectively,

where I is the identitymatrix in two dimensions. Notice that
these direction vector sets also produce boxes with order2

subregions (colored in plot).

as an interpolation technique in one dimension [6], particularly
B-splines. Fewer techniques have been discussed and evaluated for
two dimensional problems. Though in two and three dimensions
tensor product splines remain computable [14], tensor products
have an unfortunate exponential scaling in parameterization with
increasing dimension. Exponential scaling prohibits tensor products
from being reasonably applied beyond three-dimensional data. In
order to address this dimensional scaling challenge, C. de Boor and
others have recently proposed box splines [7]. Two of the three
meshes introduced in this work involve box-shaped regions of
support and use box splines as the underlying basis functions.

1.1 Box Splines
A box spline in Rd is defined by its direction vector set A, composed
of s d-vectors where s ≥ d . Further,Awill be written as ad×s matrix.
The firstm column vectors of A are denoted by Am ,m ≤ s . Ad is
required to be nonsingular. Consider the unit cube in s dimensions
Qs = [0, 1)s . As

(
Qs

)
is now the image (in d dimensions) of Qs

under the linear map A. This image is the region of support for the
box spline defined by As in d dimensions. The box spline function
in d dimensions for Ad is defined as

B (x | Ad ) =



(det(Ad ))−1, x ∈ Ad (Qd ),

0, otherwise.
(1)

For As when s > d the box spline is computed as

B (x | As ) =

∫ 1

0
B (x − tvs | As−1)dt , (2)

clc1 uc1

lc2

uc2

Figure 3: An example box in two dimensions with anchor
c, upper widths uc1 , u

c
2 , and lower widths lc1 , l

c
2 . Notice that c

is not required to be equidistant from opposing sides of the
box, that is uci , l

c
i is allowed.

where vs is the sth direction vector of A.
The application of box splines presented in this paper always

utilizes the d-dimensional identity matrix as Ad . This simplifies
the computation in Equation 1 to be the characteristic function
for the unit cube. Composing A strictly out of k repetitions of the
identity matrix forms the kth order B-spline with knots located
at 0, 1, . . ., k − 1, k along each axis (see Figure 1). Furthermore,
while the number of subregions for the kth order d-dimensional
box spline grows as kd (see Figure 2), the symmetry provided by
direction vector sets composed of repeated identity matrices allows
the computation of box splines to be simplified. The value of a
box spline at any location is then the product of all axis-aligned
1-dimensional kth order box splines.

The box splines as presented are viable basis functions. Each box
spline can be shifted and scaled without modifying the underlying
computation (similar to wavelets), yet the underlying computation
is simple and scales linearly with dimension. For a more thorough
introduction and exploration of box splines in their more general
form, readers are referred to [7].

2 INTERPOLATION AND REGRESSION
Throughout this section, the notation will be reused from Section 1.
X ⊂ Rd is a finite set of points with known response values f (x )
for all x ∈ X . Also let L,U ∈ Rd define a bounding box for X such
that L < x < U for all x ∈ X .

Define a box bc = (c, lc ,uc ) in d dimensions with anchor c ∈ Rd ,
lower width vector lc ∈ Rd+, and upper width vector uc ∈ Rd+
(where uci refers to the ith component of uc ). A visual example of
a box in two dimensions can be seen in Figure 3. Now, define a
componentwise rescaling function д : Rd → Rd at point x ∈ Rd to
be (

дc (x )
)
r
=

k

2

(
1 −

(xr − cr )−
lcr

+
(xr − cr )+

ucr

)
, (3)

where y+ = max{y, 0}, y− = (−y)+, k is the order of the box spline
as described in Section 1.1. Finally, each box spline in a box mesh
can be evaluated as Bc (x ) = B (дc (x ) | A) presuming the order
of approximation implies A. Both box meshes described in the
following subsections use box spline basis functions of this form.

A notable property of boxes defined with the linear rescaling
function дc , is that C0 and C1 continuity of the underlying box
spline are maintained. C0 continuity is maintained through scaling.
C1 continuity is maintained for all box splines with C1 continuity
(order ≥ 3) because the scaling discontinuity is located at c , where
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all box splines (of the presented form) have first derivative zero. All
continuity beyond the first derivative is lost through the rescaling
function дc .

2.1 Max Box Mesh
The first of the three meshes produces a set of boxes around chosen
control points and each box has maximal distance between the con-
trol point and the nearest side of the box. This centrality property
is one mechanism for creating the largest reasonable regions of
support for the underlying basis functions. The individual boxes
are constructed via the following procedure given a set of control
points C ⊆ X , c (i ) ∈ C ,

(1) Initialize a box bc
(1)
=

(
c (1) , (c (1) − L), (U − c (1) )

)
.

(2) Identify c (i ) over
{
j ��� j , 1, Bc

(1) (
c (j )

)
, 0

}
that minimizes




c
(j ) − c (1)


∞.

(3) Change the the box bc
(1)

along the first dimension r such
that ���

���c
(1) − c (i ) ���

���∞ =
���c
(1) − c (i ) ���r , to exclude c (i ) from the

support of Bc
(1)
.

(4) Repeat steps 2 and 3 until no point in C is in the support of
Bc

(1)
(at most 2d times, once for each boundary of a box).

The same process is used to construct boxes around all control
points inC . In order to improve the generality of the approximation,
a set of control points is initially chosen to be well-spaced using a
statistical method from [1]:

(1) Generate a sequence of all pairs of points sorted by ascend-
ing pairwise Euclidean distance between points

(
x (i1 ) ,x (j1 )

)
,(

x (i2 ) ,x (j2 )
)
, . . . , so that 


x

(ik )−x (jk )


2 ≤



x

(ik+1 )−x (jk+1 )


2.
(2) Sequentially remove points from candidacy until only |C |

remain by randomly selecting a single point from each pair(
x (im ) ,x (jm )

)
form = 1, . . . if both x (im ) and x (jm ) are still

candidates for removal.
Once the boxes for a max box mesh have been constructed, the

parameters can be identified via a least squares fit. The max box
mesh (denoted MBM) is used to generate a |X | × |C | matrix M
of box spline basis function evaluations at all points in X . The
solution to the least squares problem minP




M P − f (X )


2 is the
parameterization ofMBM . WhenC = X ,M is the |X | × |X | identity
matrix, making the max box mesh approximation f̂ an interpolant.

While setting the number of boxes equal to the number of points
causes the max box mesh to be an interpolant, the generality of the
max box mesh approximation can often be improved by bootstrap-
ping the selection of control points. Given a user-selected batch
size s ≤ |X |, start with s well-spaced control points. Next, mea-
sure the approximation error at x < C and if the error is too large
(determined by user), pick s points at which the magnitude of ap-
proximation error is largest, add those points to C , and recompute
the max box mesh. The user is left to decide the batch size s and the
error tolerance based on validation performance and computability.
This work uses a batch size of one.

Definition 2.1. The hyperplane xr = cr + ucr is the upper bound-
ary of box bc along dimension r , and similarly xr = cr − lcr is
the lower boundary of box bc . When the anchor point y, for some
box by , lies in the hyperplane (and facet of box bc ) defining either

boundary along dimension r of bc it is said that by bounds bc in
dimension r and is denoted

(
bc ���r b

y
)
.

Throughout all experiments and all repeated trials conducted
for this study, all tested interpolation points were covered by at
least one box in the MBM . However, it is possible for the MBM
to not form a covering of [L,U ] when there are cyclic boundaries.
Consider the following example in three dimensions:

C =
{
(0, 0, 0), (1, 0, 2/3), (1, 1, 4/3)

}
,

bc
(1)
=

(
(0, 0, 0), (∗, ∗, ∗), (1, ∗, 4/3)

)
,

bc
(2)
=

(
(1, 0, 2/3), (1, ∗, ∗), (∗, 1, ∗)

)
,

bc
(3)
=

(
(1, 1, 4/3), (∗, 1, 4/3), (∗, ∗, ∗)

)
.

Asterisks are used to represent boxes that are not bounded by other
boxes along some dimensions. The point (2, 2,−3) is not in any
of the max boxes defined above. In this case, there is a cycle in
box boundaries that looks like

(
bc

(1) ���1 b
c (2) ���2 b

c (3) ���3 b
c (1)

)
. This

example demonstrates that it is geometrically possible for the max
box mesh to fail to cover a space, however experiments demonstrate
that it is empirically unlikely.

The max box mesh remains a viable strategy for computed ap-
proximations. Given a maximum of c control points in d dimensions
with n points, the computational complexities are: O (c2d ) for com-
puting boxes, O (cd2 + d3) for a least squares fit, and O (n/s ) for
bootstrapping (which is multiplicative over the fitting complexities).
Evaluating the max box mesh requires O (cd ) computations.

2.2 Iterative Box Mesh
The iterative box mesh (IBM) comprises box-shaped regions that
each contain exactly one control point in their interior just as in the
MBM . However, the mesh is a covering for [L,U ] by construction
and places boxes in a way that reduces apparent error. The boxes
are constructed via the following procedure given a finite set of
points X ⊂ Rd , where C ⊆ X is the (initially empty) set of control
points.

(1) Add the box that covers [L,U ] anchored at the most central
point x (k ) ∈ X , add x (k ) to C , and least squares fit the IBM
model to all x ∈ X .

(2) Add a new box [L,U ] anchored atx (i ) < C such that ���IBM (x (i ) )−

f (x (i ) )��� = maxx ∈X \C
���IBM (x ) − f (x )���, reshaping all boxes

bx
(j )

that contain x (i ) by bounding the first dimension r such
that ���x

(j )
r − x

(i )
r

��� =



x

(j ) − x (i )


∞ (also reshaping the box

bx
(i )

symmetrically), add x (i ) to C , and then least squares fit
the IBM model to all x ∈ X .

(3) Repeat Step 2 until model approximation error is below tol-
erance t .

Just as for theMBM , the parameters can be identified via a least
squares fit. The iterative box mesh is used to generate a |X | × |C |
matrixM of box spline function evaluations at all points in X . Now
the box spline coefficients are the solution to the least squares
problem minP

���
���M P − f (X )���

���2. Also as for theMBM , C = X causes
M to equal the |X | × |X | identity, making the iterative box mesh
approximation f̂ an interpolant.
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As opposed to the max box mesh, the bootstrapping procedure
is built into the iterative box mesh. The user is left to decide the
most appropriate error tolerance, however a decision mechanism
and analysis is presented in Section 3.2. As mentioned earlier, the
iterative box mesh is a covering for [L,U ] by construction and this
can be proved by an inductive argument.

An IBM least squares fit f̂ (z) =
∑
j PjB

c (ij ) (z) can generate
approximations at new points z ∈ Z ⊂ Rd by evaluating f̂ (z).
The computational complexity for generating the mesh is O (c2nd )
where c is the number of control points determined by theminimum
error threshold and n = |X |. The computational complexity of
evaluating the mesh at a single point is O (cd ).

2.3 Voronoi Mesh
The final of the three meshes utilizes 2-norm distances to define
boundaries rather than max norm distances. A well-studied tech-
nique for classification and approximation is the nearest neighbor
algorithm [5]. Nearest neighbor inherently utilizes the convex re-
gion vx

(i )
(Voronoi cell [9]) consisting of all points closer to x (i )

than any other point x (j ) . The Voronoi mesh smooths the nearest
neighbor approximation by utilizing the Voronoi cells to define
support via a generic basis function V : Rd → R+ given by

V x (i )
(y) = *.

,
1 −




y − x
(i )


2

2 d (y | x (i ) )
+/
-+
,

where x (i ) is the center of the Voronoi cell, y ∈ Rd is an inter-
polation point, and d (y | x (i ) ) is the distance between x (i ) and
the boundary of the Voronoi cell vx

(i )
in the direction y − x (i ) .

V x (i ) (
x (j )

)
= δi j andV x (i )

has local support. WhileV x (i )
(x (i ) ) = 1,

the 2 in the denominator causes all basis functions to go linearly
to 0 at the boundary of the twice-expanded Voronoi cell. Note that
this basis function is C0 because the boundaries of the Voronoi cell
are C0. In the case that there is no boundary along the vector w ,
the basis function value is always 1.

While the cost of computing the exact Voronoi cells for any given
set of points grows exponentially [10], the calculation of d is linear
with respect to the number of control points and dimensions. Given
any center x (i ) ∈ Rd , set of control pointsC ⊆ X , and interpolation
point y ∈ Rd , d

(
y | x (i )

)
is the solution to

max
c ∈C\{x (i ) }




y − x
(i )


2

2
y ·

(
c − x (i )

)
− x (i ) ·

(
c − x (i )

)
c ·

(
c − x (i )

)
− x (i ) ·

(
c − x (i )

) . (4)

The parameters of the VM can now be computed exactly as
for the MBM and IBM . The Voronoi mesh is used to generate a
|X | × |C | matrix M of basis function evaluations at all points in
X . Now the VM coefficients are the solution to the least squares
problem minP




M P − f (X )


2. When X = C , M is the identity
making the mesh an interpolant. Bootstrapping can be performed
with an identical procedure to that for the IBM .

(1) Pick the most central point x (k ) ∈ X to be the first control
point in C and fit the VM model to all x ∈ X .

�� �� �� �� ��
�
��
��
��
��
���
���

��� ��� ��� ���
�

��

��

��

��

� �×��� �×��� �×��� �×��� �×���
�

��

���

���

���

���

Figure 4:Histograms of Parkinsons (totalUPDRS), forest fire
(area), and HPC I/O (mean throughput) response values re-
spectively. Notice that both the forest fire and HPC I/O data
sets are heavily skewed.

(2) Identify a control point x (i ) < C such that ���VM (x (i ) ) −

f (x (i ) )��� = maxx ∈X \C
���VM (x )− f (x )���, add x

(i ) toC , and then
fit the VM model to all x ∈ X .

(3) Repeat Step 2 until approximation error is below tolerance t .

Any VM is naïvely a covering for [L,U ], since any possible
interpolation point will have a nearest neighbor control point. The
computational complexity of evaluating a parameterized Voronoi
mesh with c control points is O (c2d ). Bootstrapping the generation
of a Voronoi mesh requires O (c2nd ) computations for a maximum
number of basis functions c determined by the error threshold.

3 DATA AND ANALYSIS
In order to evaluate the proposed interpolation and approximation
techniques, this paper utilizes three data sets of varying dimension
and application. In the following subsections the sources and targets
of each data set are described, as well as challenges and limitations
related to interpolating and approximating these data sets. The
distributions of response values beingmodeled can be seen in Figure
4. The preprocessing and approximation processes are described in
Section 3.2.

3.1 Data Summary
3.1.1 High Performance Computing I/O (n = 532,d = 4). The

first of three data sets is a four-dimensional data set produced by
executing the IOzone benchmark from [12] on a homogeneous
cluster of computers. The system performance data was collected
by executing IOzone 40 times for each of a select set of system con-
figurations. A single IOzone execution reports the max I/O file-read
throughput seen. The 40 executions for each system configuration
are converted to their mean, which is capable of being modeled by
each of the multivariate approximation techniques presented in Sec-
tion 2. The four dimensions being modeled to predict throughput
mean are file size, record size, thread count, and CPU frequency.
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Figure 5: Time required to generate model fits for each technique with varying relative error tolerance during bootstrapping.

3.1.2 Forest Fire (n = 517,d = 12). The forest fire data set [3]
describes the area of Montesinho park burned on specific days and
months of the year in terms of the environmental conditions. The
twelve dimensions being used to model burn area are the x and
y spatial coordinates of burns in the park, month and day of year,
the FFMC, DMC, DC, and ISI indices (see source for details), the
temperature in Celsius, relative humidity, wind speed, and outdoor
rain. The original analysis of this data set demonstrated it to be
difficult to model, likely due to the skew in response values.

3.1.3 Parkinson’s Telemonitoring (n = 468,d = 16). The final
data set for evaluation [13] is derived from a speech monitoring
study with the intent to automatically estimate Parkinson’s disease
symptom development in Parkinson’s patients. The function to be
predicted is a time-consuming clinical evaluation measure referred
to as the UPDRS score. The total UPDRS score given by a clinical
evaluation is estimated through 16 real numbers generated from
biomedical voice measures of in-home sound recordings.

3.2 Performance Analysis
The performance of the approximation techniques varies consider-
ably across the three evaluation data sets. Relative errors for the
most naïve approximators such as nearest neighbor can range from
zero to

(
max
x

f (x ) − min
x

f (x )
)
/min

x
f (x ) when modeling a posi-

tive function f (x ) from data. Each of the approximation techniques
presented remain within these bounds and all errors are presented
in signed relative form ( f̂ (x ) − f (x ))/f (x ). Before the models are
constructed all data values (components x (i )r of x (i ) ∈ X ) are shifted
and scaled to be in the unit cube [0, 1]d , while the response values
are taken in their original form. All models are evaluated with 10
random 80/20 splits of the data.

Each of the approximation techniques presented incorporates
bootstrapping based on an allowable error tolerance t . An analysis
of the effects of bootstrapping error tolerances on validation accu-
racy can be seen in Figure 6. The approximation meshes perform
best on the forest fire and Parkinson’s data sets when the error
tolerance used for fitting is large (smoothing rather than interpolat-
ing), while near-interpolation generally produces the most accurate
models for HPC I/O. Another performance result of note is that
theMBM and IBM have very similar basis functions with largely
different outputs.

Data Set Technique Tolerance Average Error
HPC I/O MBM 1.2 0.597
Forest Fire MBM 1.8 3.517
Parkinson’s MBM 0.6 0.114
HPC I/O IBM 0.4 0.419
Forest Fire IBM 1.8 3.615
Parkinson’s IBM 1.8 0.121
HPC I/O VM 0.2 0.382
Forest Fire VM 1.0 4.783
Parkinson’s VM 2.0 1.824

Table 1: The optimal error tolerance bootstrapping param-
eters for each technique and each data set as well as the
average absolute relative errors achieved by that tolerance.
Notice that large relative error tolerances occasionally yield
even lower evaluation errors, demonstrating the benefits of
approximation over interpolation for noisy data sets.

The selection of bootstrapping error tolerance also effects the
computation time required to fit each of the models to data. Figure
5 presents the time required to construct approximations for each
model and each data set with varying t . The rapid reduction in
computation time required for the forest fire and HPC I/O data
sets suggests that large reductions in error can be achieved with
relatively few basis functions. The Parkinson’s data set however
presents a more noisy response, with increasing number of basis
functions reducing error much less quickly.

The distributions of errors experienced by each approximation
technique when the optimal bootstrapping relative error tolerance
is selected can be seen in Figure 7. HPC I/O exhibits the most
normal approximation errors, which suggests that the models are
converging on the random noise of the response for the data set. The
worst relative approximation errors are produced by the Voronoi
mesh on the forest fire data set. The small magnitude true response
values contribute to the larger relative errors. Regardless, the VM
errors are unacceptably large.

4 DISCUSSION
The bootstrapping procedure presented for each approximation
technique still has much room for improvement. Initial analysis
suggests that the appropriate relative error tolerance needs to be
discovered empirically for each application of a modeling technique.
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Figure 6: The performance of all three techniques with varied relative error tolerance for the bootstrapping parameter. The
columns are for Max BoxMesh, Iterative BoxMesh, and Voronoi Mesh, respectively. The rows are for HPC I/O, Forest Fire, and
Parkinson’s respectively. Notice the techniques’ behavior on the Parkinson’s and Forest Fire data sets, performance increases
with larger error tolerance.

Further analytic studies could arrive at methods for determining
optimal error tolerances at runtime, however increases in runtime
complexity may not be afforded in many applications.

The box-shaped basis functions and the construction algorithms
used for theMBM and IBM could become a source of error when
d (the dimension of the data X ) is comparable to n (the number of
known points). The blending regions in which multiple basis func-
tions overlap are always axis aligned and in applications such as
image analysis, any single dimension may be unsuitable for approx-
imating the true underlying function. The Voronoi mesh attempts
to address this problem by utilizing boundaries between points in
multiple dimensions simultaneously. However, it is empirically un-
clear whether the true benefits of the VM are seen in applications
where d ≪ n.

Each of the case studies presented have fewer than 1000 points.
The complexities of the presented approximation techniques are
suitable for large dimension, but the increased complexity associ-
ated with brute-force bootstrapping currently prohibits their use
on larger data sets. The Voronoi mesh in particular has a large
complexity with respect to n which could be significantly improved
via more greedy bootstrapping. While each technique requires less
than ten seconds on average to produce a fit in the presented case
studies, the fit time required quickly grows into minutes around
1000 points. While these initial results appear somewhat limiting,

they demonstrate the viability of each mesh and leave room for
further theoretical exploration of techniques to reduce the run-
time complexity while maintaining the approximation power and
flexibility.

5 CONCLUSION
The Max Box Mesh, Iterative Box Mesh, and Voronoi Mesh each
provide novel strategies for effectively approximating multivari-
ate phenomonon. The underlying constructions are theoretically
straightforward, yet powerful and flexible. The computational com-
plexities of each make them particularly suitable for applications
in many dimensions, while the bootstrapping error tolerance pa-
rameter allows a balance between smoothing and interpolation to
be explored empirically with each application.

5.1 Future Work
A thorough comparison with constituent multivariate approxima-
tion techniques including but not limited to, linear Shepard interpo-
lation, multivariate adaptive regression splines, multilayer percep-
tron regression, and Delaunay triangulation constitutes future work.
A more detailed study of alternative bootstrapping techniques may
also provide valuable insight.
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Figure 7: A sample of relative errors for all three techniques with optimal selections of error tolerance. The columns are for
Max Box Mesh, Iterative Box Mesh, and Voronoi Mesh, respectively. The rows are for HPC I/O, Forest Fire, and Parkinson’s
respectively.
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