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Abstract

Most of the recently developed methods on optimum planning for accelerated life

tests (ALT) involve “guessing” values of parameters to be estimated, and substituting

such guesses in the proposed solution to obtain the final testing plan. In reality, such

guesses may be very different from true values of the parameters, leading to ineffi-

cient test plans. To address this problem, we propose a sequential Bayesian strategy

for planning of ALTs and a Bayesian estimation procedure for updating the parame-

ter estimates sequentially. The proposed approach is motivated by ALT for polymer

composite materials, but are generally applicable to a wide range of testing scenar-

ios. Through the proposed sequential Bayesian design, one can efficiently collect data

and then make predictions for the field performance. We use extensive simulations to

evaluate the properties of the proposed sequential test planning strategy. We com-

pare the proposed method to various traditional non-sequential optimum designs. Our

results show that the proposed strategy is more robust and efficient, as compared to
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existing non-sequential optimum designs. The supplementary material for this paper

is available online.

Key Words: Accelerated life test; Bayesian test planning; Fatigue testing; MCMC;

Optimum design; Sequential design.

1 Introduction

1.1 Motivation

For the long-term durability of reliable products, it is critical to assess the reliability

information such as the material’s lifetime under specified stress levels. An accelerated life

test (ALT) is often used to collect failure information in a timely manner by adopting stress

levels that are higher than the normal stress level (i.e., the use condition). In a typical ALT

setting, n experimental units are tested. Unit i is subjected to a specific level of stress xi

(the design input), and the failure time ti (the response) is recorded. The purpose of an ALT

is to make a precise prediction of a lifetime metric at the use condition, through a lifetime

model connecting the failure time t to the accelerating variable x.

The problem in this field is, how to choose the input stress levels x1, . . . , xn for the

n experimental units to estimate the desired characteristics (specifically, the pth quantile)

associated with the failure distribution most efficiently. Whereas such a problem has been

addressed in traditional ALT applications, it is particularly challenging for ALT with the fol-

lowing characteristics. First, even under elevated testing stress, the testing process can last

several weeks, even months to observe a failure, making data collection a time-consuming

and expensive process. Second, most testing laboratories are typically equipped with only

one or two testing machines, making the task of testing multiple samples in parallel a near-

impossible task. Third, while some prior information is available on the performance of new
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materials, such information typically involves considerable uncertainty due to lack of refer-

ence in literature. Typical examples of such ALT are polymer composites. In experimental

design literature, optimal designs are typically obtained by maximizing a utility function

based on the available “information” (e.g., Fisher information). However, in ALT exper-

iments, the failure models are typically nonlinear, making the information dependent on

the true value of the underlying parameters to be estimated. Therefore, the objective func-

tions based on such information cannot be optimized without some prior knowledge about

the true values of the parameters. There are two general classes of test planning methods:

non-Bayesian and Bayesian. In traditional life test planning, the optimum designs are deter-

mined using a non-Bayesian approach, assuming that the true parameters are known (e.g.,

Meeker and Nelson, 1975; Meeker, 1984; Nelson, 1990, Ch. 6; Pascual, 2003; King et al.,

2016). However, prior information about the true parameters is typically limited and in-

volves considerable uncertainty. Moreover, due to the limited budget for testing, the number

of samples that can be tested is often limited, so that combining information from different

sources is a useful strategy. Thus, Bayesian techniques are more natural in life test planning.

Such designs combine prior knowledge of parameters to design an efficient experiment, and

then to make statistical inferences.

Further, the lack of parallel testing facilities, and expensive nature of tests make a se-

quential testing procedure almost inevitable. In a typical sequential procedure, the (n+1)th

input point xn+1 is chosen by optimizing a utility function (information) computed from the

data (xi, ti) for i = 1, . . . , n. Sequential Bayesian designs, in which the subsequent design

point is determined by optimizing an expected utility function over prior distributions of

parameters, are intuitively appealing in our setting. In this paper, we propose a sequen-

tial Bayesian procedure to obtain an efficient fatigue testing plan for ALT with particular

application to polymer composites.
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1.2 State-of-the-art Designs for Polymer Composite ALT

A common application of ALT is the accelerated fatigue testing for polymer composite

materials. Polymer composites are made either by combining different types of polymers or

by combining polymers with other kinds of materials. They have many desirable properties,

such as light weight, high strength, and long-term durability, and find applications in a wide

array of industries including aircraft, wind turbine, transportation, construction, and even

products used in daily life. However, the fatigue and other properties of the materials need

to be tested, as they are required to meet certain industrial standards. Fatigue occurs when

a material is exposed to varying levels of stress over a period of time. The majority of

testing performed in this field is based on the standards provided in ASTM E739-10 (2010)

for stress-based fatigue testing. More details about the test setup is available in Section 2.1.

According to the standard (ASTM E739-10, 2010), engineers usually use a balanced,

equally-spaced design for ALT. This means, if there is a range of input stress, say [xL, xU ],

to be applied, then a number of equally spaced points (usually four points) are chosen in

this interval for the experiment, and each level of stress is applied to an equal number of

experimental units.

Traditional non-Bayesian methods for designing efficient ALT are based on properties

of maximum likelihood (ML) estimators. Meeker and Escobar (1998) provided a general

guideline for planning life tests to obtain the precise prediction of the pth quantile at the

use condition. Several authors such as Chernoff (1962) and Meeker and Hahn (1977; 1985)

studied optimum and compromise ALT plans and outlined practical guidelines for planning

an efficient ALT. Pascual (2003; 2004) considered optimal test plans for random fatigue-limit

models. Recently, King et al. (2016) proposed optimum test planning techniques for polymer

composites fatigue studies. Such optimal designs depend on the parameter values. Therefore,
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to identify the optimal input points, it is necessary to substitute some pre-assumed values

of the parameters.

These designs work well if the parameter values substituted are reasonably close to

the “true” ones, a condition that is difficult to guarantee. In Section 5, we will compare

our proposed sequential Bayesian strategy to existing strategies, that can be considered

benchmark strategies for planning ALT for polymer composite fatigue testing, and explain

why the proposed strategy is more natural and robust in the type of setting we consider.

1.3 Other Related Literature

Here we provide a brief review of literature that is related to the Bayesian designs

and the sequential strategies. Bayesian techniques for life test planning are available in

the literature. Chaloner and Verdinelli (1995) provided a comprehensive discussion and

applications of Bayesian designs for both linear and nonlinear models. Zhang and Meeker

(2005; 2006) considered Bayesian test planning and presented a general Bayesian planning

framework, where the optimum plan minimizes the pre-posterior expectation of the posterior

variance. Hong et al. (2015) provided two numerical approaches to evaluate the Bayesian

criterion and solved the optimum planning problems. In their methodology, an optimum

Bayesian design is determined by including the prior knowledge of unknown parameters.

A sequential design strategy can be adopted to conduct tests when test units are expen-

sive or when the testing is time-consuming. From the non-Bayesian framework, Wu (1985)

and Chaudhuri and Mykland (1995) proved the convergence of the sequentially computed ML

estimators and the convergence of the sequential design in a nonlinear experiment. McLeish

and Tosh (1990) proposed a sequential design via the ML estimation for probit models.

From the aspect of Bayesian analysis in literature, several authors used the D-optimality as

the desirable criterion, and then determined the optimum setting for the next design point.

5

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

 

 

 
 
 
 
 



Dror and Steinberg (2008) proposed an efficient procedure for a sequential experiment when

the response is from a generalized linear model. Moreover, Hu (1998) and Roy et al. (2009)

proved the convergence of the sequential design using the Bayesian estimates on nonlinear

and binary response models, respectively. Zhu et al. (2014) proposed a sequential Bayesian

strategy that converges to the locally D-optimality design corresponding to the true parame-

ter values. For the purpose of a precise prediction, Azadi et al. (2014) provided an algorithm

of sequential Bayesian designs on the application of surface electromyographic experiments

for binary responses.

1.4 Overview

The rest of the paper is organized as follows. Section 2 introduces the physical model

and develops the framework for the optimal design based on the statistical inference problem

of interest. Section 3 addresses the criterion that is used to determine the optimum sequential

Bayesian design. Section 4 shows the parameter estimation and the results of the sequential

Bayesian design. Section 5 shows the comparison between the proposed and traditional

optimum test planning methods and the sensitivity analysis on priors. Finally, Section 6

presents a summary of the results and possible areas for future work.

2 The General Framework for the Optimal Test Plan

2.1 Test Setup and Related Notations for Fatigue Testing

The most commonly-used method is the constant amplitude cyclic fatigue testing. In the

test, the stress (σ) is applied to the sides of testing coupon, where the positive and negative

values of applied stress represent tensile and compressive stresses, respectively. Three types of
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tests are typically used, which are tension-tension loading, compression-compression loading,

and reverse loading tests. Figure 1 shows a plot of the stress over time under the three types of

fatigue testing, where σM and σm denote the maximum and minimum stresses, respectively.

The stress ratio is defined as R = σm/σM . The test is a tension-tension loading test if

0 < R < 1, a compression-compression loading test if 1 < R < ∞, and a reverse loading

test if −∞ < R < 0. Examples are glass fibers of aircraft, helical compression springs, and

railcar axles respectively. As illustrated in Figure 1, one cycle is defined as the smallest

segment of the stress versus time which is repeated periodically. The testing unit is declared

to have failed if it cracks or breaks after a period of cyclic loading. Because the fiber in the

material has a direction, the angle between the testing direction and the testing coupon is

a variable, depending on the fiber direction. We use α to denote the smallest angle between

the testing direction and the fiber direction. Furthermore, the ultimate stress of a material

is denoted by σult, under which the material will break at its first cycle. Also, let h be the

frequency of the cyclic stress testing, where the unit of the frequency is Hz.

In the fatigue testing literature, the maximum stress σM is used to represent the stress

level of the test. That is, the design variable in our test planning is x = σM . The loading

cycles are repeated until failure, and the cycles to failure t is recorded for each testing

unit. In general, the number of cycles-to-failure decreases as the stress level increases. All

other variables such as σult, R, and h are fixed and set by the experimenter, and then σm

is determined when R and x are specified. Also, the test will stop if the sample unit has

not failed after a certain threshold (e.g., five millions of cycles), resulting in a right-censored

observation.
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Figure 1: Illustrative diagram of constant amplitude testing.

2.2 Physical and Statistical Models

In the reliability literature (e.g., Pascual and Meeker, 1999), the cycles-to-failure random

variable, T , is often described by a distribution of the log-location-scale family. The cumu-

lative distribution function (cdf) and probability density function (pdf) of the distribution

are given as

F (t;θ) = Φ

[
log (t)− µ

ν

]
, and f (t;θ) =

1

ν
φ

[
log (t)− µ

ν

]
,

respectively. Here, Φ(·) and φ(·) are the cdf and pdf of the standard distribution (i.e., µ=0,

ν=1), respectively. We use θ to denote the unknown parameters in the distribution. The

Weibull and lognormal distributions are common examples in the log-location-scale family.

In fatigue modeling, the scale parameter ν is assumed to be constant and the location

parameter µ = µβ (x) is specified as a function of the stress x with parameters β.

We use the physically motivated nonlinear model in Epaarachchi and Clausen (2003)

to model µ = µβ (x), which was derived from assumptions on the accumulation of fatigue

damage in polymer composite materials. The fatigue model includes the effects of stress

level, frequency, and the angle between the testing direction and the fiber direction, and
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the model is more suitable and flexible for various combination of experimental settings and

composite materials. Then, the stress-life (typically referred to as “S-N” in fatigue literature)

relationship is defined as

µβ(x) =
1

B
log

{(
B

A

)
hB
(σult
x
− 1
)(σult

x

)γ(α)−1
[1− ψ (R)]−γ(α) + 1

}
, (1)

where µβ(x) is the cycles-to-failure at stress x and β = (A,B)′. Note that A is related to

environmental effects on the material fatigue and B is related to effects from the material

itself. In addition, the function ψ (R) is defined as ψ(R) = R if −∞ < R < 1 and ψ(R) =

1/R if 1 < R < ∞, and γ (α) = 1.6 − ψ |sin (α)|. Then, in the fatigue testing model, the

unknown parameters are θ = (β′, ν)′.

In reliability studies, a quantile in the lower tail of the failure-time distribution provides

a meaningful life characteristic. In particular, let ξp,x denote the pth quantile at the stress

x, which is solved from p = F (ξp,x;θ). The log of the pth quantile can be expressed as

log (ξp,x) = µβ(x) + zpν, (2)

and zp is the pth quantile of the standard log-location-scale distribution.

2.3 Objective of the Experiment and Basic Design Criterion

The objective of the experiment is to estimate the parameters θ from the observed data,

and substitute these estimators β̂ and ν̂ into (2) to obtain the estimator of log (ξp,u) at a

normal stress level x = u, i.e.,

log
(
ξ̂p,u

)
= µβ̂(u) + zpν̂. (3)
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Figure 2: Plot of a distribution profile of use stress levels, ranging from 5% to 25% of the
ultimate stress σult.

However, in real-life applications, the normal stress level (to which polymeric materials

are exposed) is not a constant. Rather, it is more likely that a material will experience

various stress levels in use. Hence, we consider test planning under a use stress profile (i.e.,

multiple use conditions). Figure 2 gives an example of use stress profile. The use stress

profile is represented by a set of specified use levels, {u1, · · · , uK}, and their corresponding

relative frequency {w1, · · · , wK}, where
∑K

k=1wk = 1. Note that (uk, wk), k = 1, · · · , K, are

determined by the application and are fixed prior to choosing the optimal design. For a

given use stress profile, the weighted sum of the asymptotic variance of the estimator of the

pth quantile of the lifetime distribution at a vector of specified use levels can be expressed

as
K∑
k=1

wk AVar
[
log
(
ξ̂p,uk

)]
.

For pre-specified (uk, wk), k = 1, · · · , K, the above asymptotic variance depends on the input

points x1, . . . , xn, and will therefore be the basic component of the criterion or the utility

function that will be used to determine x1, . . . , xn. That is, the input points should be chosen

so that the asymptotic variance is minimized. We discuss the computation of the asymptotic

variance in the following section.
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2.4 Maximum Likelihood Estimation and Asymptotic Variance

The data from a fatigue test are denoted by (xi, ti, δi), where xi is the corresponding σM

for unit i, ti is the observed cycles to failure (or censored level), δi is the censoring indicator,

and i = 1, . . . , n. In particular, δi = 1 if the unit is censored at ti and δi = 0 if the unit fails

at ti. A censored observation means the test sample had not failed at the end of the testing.

Let (xn, tn, δn) denote the observed data, where xn = (x1, · · · , xn)′, tn = (t1, · · · , tn)′, and

δn = (δ1, · · · , δn)′. Then, the likelihood function is

L (θ|xn, tn, δn) =
n∏
i=1

{
1

νti
φ

[
log (ti)− µβ (xi)

ν

]}(1−δi){
1− Φ

[
log (ti)− µβ (xi)

ν

]}δi
,

and the log-likelihood function is

l (θ|xn, tn, δn) =
n∑
i=1

(1− δi) [log φ (zi)− log(ν)− log(ti)] + δi log [1− Φ (zi)] , (4)

where zi = [log(ti)− µβ(xi)] /ν. The ML estimates θ̂ can be obtained by finding the values

of θ that maximize (4), and the Fisher information matrix is

In (θ) = In(θ,xn) = E

[
−∂

2l (θ)

∂θ∂θ′

]
.

The suffix n in In(θ,xn) denotes that the information is based on n data points. The details

of calculation and the resulting formulae for In (θ,xn) are given in Supplementary Section

1. By the invariance property of ML estimators, the ML estimator of the pth quantile at

stress level u can be obtained from (3) where β̂ and ν̂ are the ML estimators of β and ν,

respectively. Given a specific stress level at use condition, uk, the large-sample asymptotic
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variance of log(ξ̂p,uk) is

AVar
[
log
(
ξ̂p,uk

)]
= c′k Σθ(xn) ck, (5)

where ck = [∂µβ(uk)/∂A, ∂µβ(uk)/∂B, zp]
′ and Σθ(xn) = I−1n (θ,xn).

Consequently, for a pre-specified use stress profile (uk, wk), k = 1, . . . , K, the design

criterion (weighted sum of the asymptotic variance of the estimator of the pth quantile of

the lifetime distribution at a vector of specified use levels) can be expressed as

K∑
k=1

wk AVar
[
log
(
ξ̂p,uk

)]
=

K∑
k=1

wkc
′
k Σθ(xn) ck. (6)

King et al. (2016) proposed a non-Bayesian optimum test planning technique based on

(6) for polymer composites fatigue studies. Note that such optimal designs depend heavily

on the parameter settings. However, the true parameter settings are usually unknown. In

addition, the experiment is very costly. Therefore, we use (6) to develop our sequential

Bayesian design, in which one design point is added at each step by optimizing the expecta-

tion of (6) over the posterior distribution of the parameters θ, given the data obtained till

that step.

3 Test Planning Methodology

In the previous section, we have seen that the fundamental idea behind obtaining an

optimal design, given a pre-specified use stress profile (uk, wk), k = 1, . . . , K, is to optimize

the basic design criterion given by (6) with respect to the input points xi, i = 1, . . . , n. For

simplicity, we define the scaled design points for the test plan as qi = xi/σult, which is the

ratio of maximum stress to the ultimate tensile strength so that 0 < qi ≤ 1. In practice,

a planning range [qL, qU ] of the scaled design variable q is considered, where qL and qU are
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respectively the lower and upper bounds of q. As mentioned earlier, a sequential approach

is most natural in polymer composite testing set-up. We need to specify prior distributions

for the parameters, which we do next.

3.1 Prior Distribution

Prior distributions for the unknown parameters can be postulated on the basis of the

information obtained from prior experiments, if available. As mentioned in Section 2, the

parameter A represents the effect of environmental factors and the parameter B represents

the material properties. Hence, both A and B have physical interpretations based on previous

experiments, and their prior distributions are postulated to be A ∼ Unif(a1, a2) and B ∼

Unif(b1, b2), respectively, where a1, a2, b1, and b2 are known constants. In addition, for the

prior distribution of ν2, we postulate an inverse gamma distribution with shape parameter κ

and scale parameter γ, where κ and γ are obtained from previous experience. This choice is

motivated by the fact that the inverse gamma distribution is a conjugate prior distribution

for ν2 when the cycles-to-failure distribution is the lognormal distribution.

3.2 Criterion for Sequential Bayesian Designs

Inspired by this Bayesian c-optimality criterion (Chaloner and Verdinelli, 1995) and the

recent work of Zhu et al. (2014), we propose the following objective function based on (6)

for our sequential Bayesian design:

ϕ (qnew) =

∫
Θ

[
K∑
k=1

wk c
′
k Σθ (qnew) ck

]
π (θ|qn, tn, δn) dθ, (7)
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where Σθ (qnew) = [In (θ, qn) + I1 (θ, qnew)]−1, qnew = (q′n, qnew)′, and qn = (q1, . . . , qn)′.

Then, the optimum design for the (n+ 1)th design point is

q∗n+1 = arg min
qnew∈[qL,qU ]

ϕ (qnew) . (8)

Note that the posterior distribution under n observations is essentially treated as the prior

information of parameters to determine the next design point.

From Theorem 1 of Hu (1998), we can show that our proposed method converges to

the locally optimum design which is proposed in King et al. (2016). To satisfy the necessary

condition of Theorem 1 of Hu (1998), it is easy to show that the mean of the cycles to

failure distribution is bounded and continuous in an open set containing the design and

the parameter spaces because the design and the parameter spaces are compact sets. In

addition, the parameter space is often bounded from the prior information. Hence, by

applying Theorem 1 and Remark 4 in Hu (1998), the proposed sequential Bayesian design

converges to the optimum design based on the true values of parameters.

The implication of this discussion is that, even if one starts with planning information of

parameters that is different from the truth, the estimator will converge to the true parameter

values using the sequential Bayesian design strategy. Because the parameter will converge

to the true values, the design also converges to the optimum design. Finally, we provide

a discussion for proposing a Bayesian design criterion defined by taking the expectation of

a frequentist criterion (asymptotic variance) over the prior distribution of parameters. As

shown by Zhang and Meeker (2006), the approximated posterior variance is

C(D) =

∫
c′
[
S−1 + ID(θ)

]−1
c d(ω(θ)), (9)

where D is the specified design, ID(θ) is the Fisher information matrix based on D, S

14

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

 

 

 
 
 
 
 



represents the covariance matrix of the prior distribution, and ω(θ) is the prior distribution.

The form of the proposed objective function (7) is similar to the form of (9), with the

posterior distribution with n observations being essentially treated as the prior information

prior to obtaining the next design point.

3.3 The Proposed Procedure

To optimize the Bayesian criterion (7), posterior samples need to be drawn from pos-

terior distribution of θ in the sequential updating process. Using the prior distributions

mentioned in Section 3.1, the joint posterior distribution of (A,B, ν2) is

π
(
A,B, ν2|qn, tn, δn

)
∝

n∏
i=1

{
1

νti
φ

[
log (ti)− µβ(xi)

ν

]}(1−δi){
1− Φ

[
log (ti)− µβ(xi)

ν

]}δi
× π(A)π(B)π(ν2)

=
n∏
i=1

{
1

νti
φ

[
log (ti)− µβ(xi)

ν

]}(1−δi){
1− Φ

[
log (ti)− µβ(xi)

ν

]}δi
× γκ

Γ(κ)

(
ν2
)−κ−1

e−γ/ν
2

1[a1,a2](A)1[b1,b2](B).

Then, the conditional posterior distribution of ν2 given (A,B) is

π
(
ν2|qn, tn, δn, A,B

)
∝
(

1

ν2

) (n−
∑n
i=1 δi)
2

+κ+1

exp

{
−
∑n

i=1 (1− δi) [log ti − µβ(xi)]
2 + 2γ

2ν2

}

×
{

1− Φ

[
log (ti)− µβ(xi)

ν

]}δi
,
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and the conditional posterior distribution of (A,B) given ν2 is

π
(
A,B|qn, tn, δn, ν2

)
∝

n∏
i=1

{
1

νti
φ

[
log (ti)− µβ(xi)

ν

]}(1−δi){
1− Φ

[
log (ti)− µβ(xi)

ν

]}δi
× 1[a1,a2](A)1[b1,b2](B).

Each iteration of the proposed sequential strategy involves three steps: (i) drawing sam-

ples from the posterior distribution, (ii) using a Monte Carlo method for approximating the

criterion in (7), and (iii) optimizing the criterion. In this paper, we propose two algorithms

to solve (i), (ii), and (iii) and these algorithms (Algorithm 1 and Algorithm 2) are given

in the supplementary material (Supplementary Sections 2 and 3).

Note that the proposed approach still works even if there is no current data but only

the prior information. Specifically, the posterior distribution after n observations and in-

formation matrix in (7) are replaced by the prior distribution of parameters, π (θ), and the

precision matrix of prior distribution (Hong et al., 2015), respectively. In some situations,

instead of pre-fixing the required number of test samples, it may be desirable to define a

stopping rule for the sequential design. One purpose of the sequential scheme is to increase

the information on model parameters by obtaining data sequentially. Therefore, stopping

rules can be defined in terms of the relative error of parameter estimates or the posterior

distribution of parameters (Zhu et al., 2014) and the efficient estimates of parameters (Never,

1994). Once the difference of the criterion of the rules is smaller than a specified level, then

the sequential scheme can be stopped.
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(a) Stress-life relationship (b) Log of cycles vs. Stress

Figure 3: Plots of historical data from a fatigue testing experiment for E-glass fibers.

4 Application on Polymer composite tests Planning

In this section, we demonstrate the proposed sequential Bayesian algorithm in designing

fatigue test experiments. Figure 3 shows 14 observations from a fatigue testing experiment

for glass fibers (SNL/MSU/DOE Composite Materials Fatigue Database, 2016). Glass fiber

is a composite material made of a polymer matrix reinforced with fibres. We consider a

fatigue testing experiment for E-glass, the most common type of glass fiber, to demonstrate

the proposed sequential Bayesian design procedure. The 14 observations that constitute the

historical data include 3 right-censored and 11 failed observations. The other variables in (1)

are set at h = 2, R = 0.1, α = 0, and σult = 1339.67 MPa. Figure 3(a) shows the stress-life

relationship in original scale and Figure 3(b) shows the relationship between stress and the

logarithm of cycles.

The ML estimates of (A,B, ν)′ are (0.0157, 0.3188, 0.7259)′ and their asymptotic stan-

dard deviations are (0.0056, 0.0434, 0.1456)′, which are obtained by using the inverse of the

Fisher information matrix. For the purpose of design evaluation and comparison using sim-
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(a) Data subset 1 (b) Data subset 2

Figure 4: Plots show the three selected observations from the original data for data subset 1
(DS1) and data subset 2 (DS2). The observations of both subsets are selected under the
same stress levels.

ulation studies, we will assume these values to be the true parameter values, denoted by

θ0 = (A0, B0, ν0)
′ = (0.0157, 0.3188, 0.7259)′ hereafter. We can also use Bayesian estimates

based on the prior distributions. However such estimates are not useful in demonstrating

how the proposed algorithm works. In polymer composite testing, the size of historical data

is typically extremely limited. Thus we will demonstrate our proposed algorithm assuming

that only three observations (a subset of the fourteen historical observations) are available to

the experimenter prior to designing the experiment. Note that three is the smallest sample

size that can be used to compute ML estimates of three parameters. The subset of three ob-

servations is shown in Figure 4(a) will be referred to as Data Subset 1 (DS1) henceforth. We

also obtain a second subset of three observations shown in Figure 4(b) that will be referred

to as Data Subset 2 (DS2), and be used later in Section 5.

Before implementing the sequential Bayesian algorithm, the following aspects of the

design are finalized:

1. Prior distributions of parameters: Epaarachchi and Clausen (2003) provided the
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estimates of A and B for different materials under different experimental settings,

based on which we postulate the prior distributions as A ∼ Unif(10−6, 0.1) and B ∼

Unif(10−6, 1). From similar considerations, we assume ν2 to follow an inverse gamma

distribution with shape parameter κ = 4.5 and scale parameter γ = 3.

2. Number of design points to be generated: We consider a setting in which 12 new

design points need to be determined sequentially given the historical data DS1.

3. The candidate design points: The candidate set {q(1), . . . , q(L)} consists of points

in the interval [qL = 0.35, qU = 0.75] with a 5% increase.

4. The use stress level profile: The pattern of stress levels during potential use denoted

by (uk, wk), k = 1, . . . , K is assumed to be the distribution shown in Figure 2, where

K = 20, and the stress levels range from 5% to 25% of σult.

We are now ready to apply our sequential Bayesian algorithm to obtain 12 new design

points by applying Algorithms 1 and 2. The samples from the posterior distribution are

drawn using the Markov chain Monte Carlo (MCMC) method described in Algorithm 1,

and the illustrative auto-correlation functions (ACF) based on the original dataset are shown

in Figure 4.1 in Supplementary Section 4. The weighted sum of the asymptotic variance in

(6) is computed in Algorithm 2. In step 5 of Algorithm 2, the response tnew corresponding

to a new design point q∗new is obtained by generating a random draw from the cycles-to-failure

distribution with the true values θ0. Note that the cost of computation depends on the size

of candidate set and the size of draws from the MCMC samples. The average computation

time required to generate 12 new design points when 1,000 MCMC samples are drawn to

compute the asymptotic variance for each candidate point.

The design points obtained sequentially and the corresponding values of the asymptotic

variance are shown in Figure 5. Here, we illustrate the design properties using four specific
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(a) Sequential Bayesian design trials based on DS1 (b) The values of asymptotic variance

Figure 5: Plots show sequential designs and corresponding values of asymptotic variance
based on DS1.

simulation outputs. Figure 5(b) shows that the values of the asymptotic variance exhibit

a monotonically decreasing trend after each new design point is added sequentially to the

initial design DS1. From Figure 5(a), we also observe that the sequential Bayesian algorithm

tends to converge to a design with support at two points (i.e., 0.35 and 0.75) with weights

in the ratio of 2:1.

This observation can be explained by the fact that the design criterion demands a

precise prediction at the use condition, and hence more design points are located at lower

stress levels. We note that the locally optimum design derived by King et al. (2016) at

θ = θ0 would allocate exactly 8 and 4 points to the lower bound qL and upper bound

qU , respectively. The results therefore suggest that our sequential algorithm converges to

the two-level locally optimum design for polymer composites derived by King et al. (2016)

corresponding to the assumed true values of parameters.
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However, the true values of parameters will always be unknown in practice. A common

way to derive locally optimal designs is to substitute the ML estimates of parameters from

a previous experiment to obtain the optimal design. Because we assume the historical data

to be DS1 in this example, these ML estimates are θ̂1 = (0.0005, 0.7429, 0.1658)′. Then, the

two-level locally optimum design based on θ̂1 allocates 11 and 1 points to the stress levels

0.65 and 0.75, respectively, which is not even close to the result based on the true values

of parameters. In other words, if one adopts the strategy of traditional optimum design,

inaccurate planning values for model parameters may cause an extremely inefficient design

and lead to unreliable inferences about fatigue life. From this point of view, the proposed

sequential Bayesian design is a much more robust method compared to the locally optimum

designs because it is seen to converge to the true optimal design.

5 Design Performance Evaluation

In this section, we further investigate the performance of the proposed method by com-

paring it with other state-of-the-art designs described in Section 1.2. These designs include

two-level optimum designs, compromise designs, and equally-spaced designs. Here, we use

these designs to compare performance with the proposed sequential Bayesian design. The

two-level optimum and compromise designs are supposed to be determined by substituting

values of the parameters that are assumed to be close to their true values. Here we will ob-

tain these designs by substituting the ML estimates obtained from the preliminary dataset.

The descriptions of these designs are given below.

1. Two-level optimum design (TOD): Given the values of parameters, the optimum design

consists of support at two design points denoted by q1 and q2 with their corresponding

sample size allocations n1 and n2, respectively. Letting q2 = qU , q1 is a function of
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the parameters and needs to be determined. Then, the decision variables are q1, n1

and n2, and the optimum design is determined by minimizing the weighted asymptotic

variance at use conditions.

2. Compromise design (CPD): Given the values of parameters, the compromise design

consists of support at three design points denoted by q1, qm, and q2 with their corre-

sponding sample size allocations n1, nm, and n2, respectively. Letting qm = (q1+q2)/2,

q2 = qU , and nm prefixed, q1 and qm are functions of the parameters and need to be de-

termined. Then, the decision variables are q1, qm, n1 and n2, and the optimum design

is determined by minimizing the weighted asymptotic variance at use conditions.

3. Equally-spaced design (EQD): Four equally-spaced stress levels are chosen in the in-

terval [qL, qU ].

In the following subsections, we compare the performance of the proposed sequential Bayesian

design (SBD) with that of the three state-of-the-art designs via simulation study.

5.1 Simulation Procedure

In the simulation study, we use the data subsets in Figure 4 as the historical dataset

to determine the sequential Bayesian, two-level optimum, compromise, and equally-spaced

designs. Assume that the true parameter settings are θ0. The total number of design points

generated by each design is N = 12.

1. For each historical dataset (DS1 and DS2), twelve design points are generated sequen-

tially by Algorithm 2. The two-level optimum and compromise designs are derived

by substituting the ML estimates for the relevant dataset.
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Table 1: ML estimates and standard deviations (in parentheses) for DS1 and DS2.

Parameter Â B̂ ν̂

θ̂1
0.0005 0.7429 0.1658

(0.0004) (0.0907) (0.0677)

θ̂2
0.0162 0.3333 0.4044

(0.0068) (0.0561) (0.1651)

2. For each design qN = (q1, . . . , qN), observations (tN , δN) are generated, using the model

with the assumed true values θ0.

3. The parameters are estimated from the data (qN , tN , δN) and the asymptotic variance

is computed using the estimated values of parameters.

After conducting 1,000 simulations with each setting, the average of asymptotic variances

are computed as the measure of performance for the four strategies.

5.2 Simulation Results

To determine the two-level optimum and compromise designs, we first obtain the ML

estimates from DS1 and DS2, and denote them by θ̂1 = (0.0005, 0.7429, 0.1658)′ and θ̂2 =

(0.0162, 0.3333, 0.4044)′, respectively. Table 1 summarizes the ML estimates for the DS1 and

DS2 and their approximate standard deviations computed as square roots of the diagonal

elements of the inverse of the Fisher information matrix. Note that θ̂2 is closer to θ0 than

θ̂1. In non-Bayesian approaches, it is expected that the optimum designs are different when

substituted parameter values are different.

Given that 12 new design points need to be determined, the two-level optimum designs,

compromise designs, and equally-spaced designs are shown in Table 2, where TOD0, TODi

and CPDi are designs determined by θ0 and θ̂i. Under the true parameter values, assumed
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to be θ0, the two-level optimum designs are 8 and 4 points allocated to stress levels 0.35

and 0.75, respectively. It is expected that the optimum design based on θ̂2 is the same as

the result based on the true values since θ̂2 is close to θ0. However, the resulting test plan

has very different optimum stress levels and sample size allocations if we treat θ̂1 as the true

values of parameters. The optimum stress levels based on θ̂1 are 11 and 1 samples allocated

to stress levels 0.65 and 0.75, respectively.

On the other hand, we also obtain the sequential Bayesian design based on DS1 and DS2

using the proposed approach. To compare the designs generated by the sequential Bayesian

algorithm, we summarize the average sample size allocations from 1,000 simulations and

display the summary in Figure 6. It is found that the average sample size allocated to stress

levels 0.35 and 0.75 are about 8 and 4, respectively. It is interesting to note that the results

obtained from the proposed algorithm are almost the same as those obtained from the two-

level optimum design based on the true parameters, and hence TOD0 is the limiting design

generated by the sequential Bayesian approach. Moreover, unlike the two-level optimum

design, the results are insensitive to the historical datasets used to obtain initial estimates

of the parameters.

On the other hand, the averages of asymptotic variance of SBD evaluated by the Bayes

estimates are 0.7663 and 0.7170 for DS1 and DS2, respectively. However, the Bayesian infer-

ence includes the effect of prior distributions. Hence, for the fair comparison of non-Bayesian

and Bayesian methods, we evaluate the asymptotic variance of SBD by ML estimates of the

final generated data. Table 3 shows the average values of asymptotic variances for the

competing designs and the proposed sequential Bayesian design over the 1,000 simulations.

Based on DS1, the sequential Bayesian design is more advantageous than the two-level op-

timum and compromise designs based on θ̂1 and the equally-spaced design. However, based

on DS2, the proposed method is slightly worse than the two-level optimum design. Note
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Table 2: Optimum design for TOD, CPD, and EQD.

Design Parameter Stress level Sample size allocation

TOD (q∗1, q2) (n∗1, n
∗
2)

TOD0 θ0 (0.35, 0.75) (8, 4)

TOD1 θ̂1 (0.65, 0.75) (11, 1)

TOD2 θ̂2 (0.35, 0.75) (8, 4)

CPD (q∗1, q
∗
m, q2) (n∗1, nm, n

∗
2)

CPD1 θ̂1 (0.65, 0.70, 0.75) (10, 1, 1)

CPD2 θ̂2 (0.35, 0.55, 0.75) (7, 1, 4)

EQD (qL, q2, q3, qH) (nL, n2, n3, nH)

EQD (0.35, 0.50, 0.60, 0.75) (3, 3, 3, 3)

Figure 6: Plots show average sizes allocation of sequential Bayesian designs for the DS1 and
DS2.
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Table 3: The average of AVars for each design based on DS1 and DS2.

Design DS1 Design DS2
TOD0 0.6236 TOD0 0.4276
SBD 0.6163 SBD 0.4366
TOD1 4.0337 TOD2 0.4240
CPD1 3.9219 CPD2 0.4916
EQD 1.0077 EQD 0.8078

that the asymptotic variance of TOD0 is not the smallest because the asymptotic variance

is evaluated by the estimates of the data including the three historical observations and the

new generated data. Hence, the proposed sequential Bayesian design performs well when

true parameters are unknown.

5.3 Comparison Based on Different Historical Data

In previous sections, we found that the optimum designs based on non-Bayesian ap-

proaches depend strongly on the chosen values of the parameters. For a comprehensive

comparison, we take all combinations of three failed observations from the original dataset

in Figure 3 as the historical data, and determine the proposed sequential Bayesian design and

the three competing designs based on their ML estimates of parameters for 300 simulation

trials. After determining the optimum designs, we follow the simulation procedure described

in Section 5.1. The average and standard deviation of asymptotic variance for all historical

datasets are summarized in Figure 7(a). Among all historical datasets, the average values of

asymptotic variance are tightly distributed around 0.49 and 0.96 for the sequential Bayesian

design and equally-spaced design, whereas they vary widely for the two-level optimum and

compromise designs. It is clear that the average and standard deviation of asymptotic vari-

ance for the sequential Bayesian design are both smaller than those for the three competing

designs.
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(a) Histograms of AVar (b) Histograms of M

Figure 7: Plots show comparisons of values of asymptotic variance and M of SBD, TOD,
CPD, and EQD for all historical datasets.

As additional performance measures, two measures of relative error are defined to com-

pare the estimated values of parameters after collecting 12 new generated observations. These

are

m(θj) =
1

S

S∑
s=1

(
|θ̂j,s − θj|

θj

)2

, and M =

√√√√ 3∑
j=1

m(θj),

where θ̂j,s is the estimated value of θj in the sth simulation trial, θj ∈ θ, j = 1, 2, 3,

s = 1, . . . , S, and S = 300. Figure 7(b) shows the performance of the estimated parameters

for all combinations of historical data. The average and the standard deviation of M for

the SBD are smaller than those for the TOD and CPD but fairly close to those for EQD. It

is clear that the relative errors of estimated values of θ by the SBD are much smaller than

those by the TOD and CPD.

From Figure 8(a), we further observe that the estimated values of A and B obtained

by using the TOD and CPD depart substantially from the true values, while the estimated
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values of A and B obtained by using the SBD are close to the true values for all combinations

of historical data. Figure 8(b) shows that the asymptotic variance is large when using the

TOD and CPD due to inaccurate planning values. In contrast, the asymptotic variance and

estimated values of parameters perform more reasonably by using the EQD and SBD.

Besides, the histograms of average sample size allocation generated by SBD and TOD

via simulation are shown in Figure 5.1 of Supplementary Section 5. For the sequential

Bayesian designs, there are about 4 design points allocated at the highest stress level and

about 8 design points allocated at lower stress levels which is mainly at stress level 0.35. As

mentioned in the previous section, the optimum allocation and stress levels after conducting

sequential Bayesian designs are almost the same as the two-level optimum design under the

true parameters. When the substituted parameter values differ from the true values of the

parameters, the TOD performs poorly. Generally speaking, the proposed sequential Bayesian

design is a robust method especially for historical datasets with small sample sizes.

5.4 Sensitivity Analysis on Different Priors

In this section, we compare the performance of the proposed method by selecting prior

distributions that are different from the uniform priors postulated in Section 4. The following

four prior distributions of A and B are considered.

• Prior 1: A ∼ N(0.08, 0.0008) and B ∼ N(1, 0.0833)

• Prior 2: A ∼ N(0.08, 0.0008) and B ∼ N(0.3188, 0.0833)

• Prior 3: A ∼ N(0.0157, 0.0008) and B ∼ N(1, 0.0833)

• Prior 4: A ∼ N(1, 0.25) and B ∼ N(1, 0.25)

The four prior distributions include at least one distribution that the true parameter is

in the extreme tail of the prior as shown in Figure 6.1 in Supplementary Section 6. Note

that the variances of the first three prior distributions are the same uniform priors as A ∼
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(a) Boxplots of m(θj) for SBD and TOD. (b) Scatter plots of M against AVar

Figure 8: Plots show comparisons of m(θj) and estimated values against asymptotic variance
of SBD and TOD for all historical datasets.

Unif(10−6, 0.1) and B ∼ Unif(10−6, 1) postulated in Section 4. We use the same simulation

procedure described in Section 4 to derive the sequential Bayesian design using the current

data, DS1, using the four prior distributions. The results are shown in Table 4 and Figure 9.

As seen from Figure 9, all the four priors lead to an approximate average allocation of 4

and 8 design points to 0.75 and 0.35, respectively. In addition, Table 4 shows that while the

averages of asymptotic variances (AVar) obtained by using the ML estimates are the same

(around 0.61) for all prior distributions, those obtained by using the Bayesian estimates are

different depending on different priors. These findings are consistent with the observation of

Pronzato and Pázman (2013), who pointed out the less sensitivity on the choice of priors at

the design stage in the sequential Bayesian design.
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Figure 9: Plots show average sizes allocation of sequential Bayesian designs for different
priors.

Table 4: The average of AVars for each prior distribution based on DS1.

Prior AVar by Bayes estimates AVar by ML estimates

Prior 1 0.7826 0.6048
Prior 2 0.8250 0.6162
Prior 3 0.7511 0.6076
Prior 4 0.7908 0.6068

6 Conclusion and Areas for Future Research

In this paper, we combine Bayesian techniques with a sequential test planning strategy

to design fatigue tests. The design criterion based on the asymptotic variance of a predicted

quantile of interest is used. A numerical algorithm is provided to determine the optimum

stress level sequentially for the subsequent design point. From the numerical results and

simulations, the proposed sequential Bayesian design is found to be superior to the existing
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strategies because of its robustness with respect to the historical data used to obtain pre-

liminary parameter estimates. Furthermore, the results also show that the optimum stress

levels and sample size allocation by sequential Bayesian designs quickly converge to the tra-

ditional two-level optimum design under the true parameters. The developed methodology

is implemented in an R package “SeqBayesDesign” (Lee and Hong, 2018). The package

can be applied to determine the sequential Bayesian design for traditional ALTs and the

constant amplitude fatigue test based on the log-normal distribution and the Weibull distri-

bution. Practitioners can implement it by inputting the original data settings and the prior

information.

One may be concerned about the time it takes to complete the sequential design. In the

illustrative example, the frequency f is 2 cycles per second. The exact experimental time

of a testing unit is about 12 days (2,000,000/2 = 1,000,000 seconds) if the unit is censored.

For one simulation trial with 12 specimens, the total experimental time is 11,470,956 cycles

including three censored testing units. Consequently, it takes about 67 days to complete

the sequential design. While occasionally there might be an urgency to obtain the test

data, recall that our work is primarily motivated to cater to the requirements of industrial

laboratories that have a limited number of testing machines and are compelled to test one

sample at a time. In such situations, sequential designs are inevitable.

Although our methodology is motivated by polymer composite testing problems, the

developed strategy can be easily extended to other ALT problems. For example, the proposed

methodology can be applied to cases where doing much simultaneous testing is not practical,

because the testing involves expensive equipment, and companies are often limited by the

number of test machines that they can use simultaneously. In our methodology, we pick one

design point in each updating step. In some situations, a company may have two or more

testing machines available, our methods can be easily extended to batch sequential plans
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that allow optimal selection of two or more design points at each iteration.

The following are possible areas for future works:

1. One can consider sequential design based on the dual objective optimization. At the

beginning of an experiment, the sample size is limited, often resulting in imprecise

parameter estimation. Once enough observations are available, the main concern is

to make precise predictions. Such a goal can be achieved by combining two different

design criteria such as D- and c- optimality, as in Pan and Yang (2014).

2. One may consider a pre-posterior expectation of the criterion function or an expected

utility function as the criterion in the sequential Bayesian design. Instead of using

approximated formulation of the criterion, the efficient approaches and algorithms

recently proposed by Weaver et al. (2016) and Overstall and Woods (2017) can be

applied to the stages of evaluating the criterion and determining the next design point.

3. Pascual and Meeker (1998) considered modified sudden death test plans to address the

problem of limited testing machine in life tests. Application of the proposed sequential

updating method to such settings may be of interest.

4. Beside ALTs, the technique of accelerated degradation tests, including accelerated

repeated measures degradation tests and accelerated destructive degradation tests,

have also been widely used in the field. The planning of these types of accelerated

degradation tests have been addressed in literatures (Shi et al., 2009; Shi and Meeker,

2012, 2013; Weaver and Meeker, 2014). In the future, the proposed method can be

applied to the planning of such accelerated degradation tests.
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Supplementary Material

The supplementary material including additional details: formulation of Fisher infor-

mation matrix, proposed algorithms, and figures is available online (pdf file).
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