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ABSTRACT

Highly-parallel, high-performance scienti�c applicationsmustmax-

imize performance inside of a power envelope while maintaining

scalability. Emergent parallel and distributed systems o�er a grow-

ing number of operating modes that provide unprecedented con-

trol of processor speed, memory latency, and memory bandwidth.

Optimizing these systems for performance and power requires an

understanding of the combined e�ects of these modes and thread

concurrency on execution time. In this paper, we describe how

an analytical performance model that separates pure computation

time (C) and pure stall time (S) from computation-memory overlap

time (O) can accurately capture these combined e�ects. We apply

the COS model to predict the performance of thread and power

mode combinations to within 7% and 17% for parallel applications

(e.g. LULESH) on Intel x86 and IBM BG/Q architectures, respec-

tively. �e key insight of the COS model is that the combined

e�ects of processor and memory thro�ling and concurrency on

overlap trend di�erently than the combined e�ects on pure com-

putation and pure stall time. �e COS model is novel in that it

enables independent approximation of overlap which leads to ca-

pabilities and accuracies that are as good or be�er than the best

available approaches.
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1 INTRODUCTION

Future high-performance, scienti�c applications will be highly par-

allel and designed to run in environments of enormous scale but

limited power. E�ciencywill be key to achieving the promise of ex-

ascale. Emergent systems will have large numbers of con�gurable

operating modes that provide unprecedented control of processor

speed and memory frequency and bandwidth. Unfortunately, very
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li�le is known about the combined e�ects of these operatingmodes

and thread concurrency on execution time and e�ciency.

�e performance e�ects of various operating modes have been

studied mostly in isolation. Dynamic voltage and frequency scal-

ing (DVFS), the automated adjustment of processor power and speed

se�ings, has been explored extensively [6, 17, 19, 34]. More re-

cently, analogous research on the e�ects of dynamic memory volt-

age and frequency thro�ling (DMT ), the automated adjustment of

DRAM power and speed se�ings, has surfaced [10, 13, 29]. Other

memory power modes such as dynamic bandwidth thro�ling 1

(DBT ), where one or more idle clock cycles are inserted between

memory accesses to lower peak bandwidth, are emergent. Dy-

namic concurrency thro�ling (DCT ), the automated adjustment

of thread concurrency, has also received widespread a�ention for

some time [8].

While some have a�empted to study the combined e�ects of

two types of operating modes (e.g., CPU and memory scaling [10,

13], CPU scaling and concurrency thro�ling [8]), to the best of our

knowledge, no one has accurately modeled the combined e�ects

of CPU thro�ling, memory thro�ling, and concurrency thro�ling.

Modeling the combined e�ects of these three operating modes

is incredibly challenging. Capturing the interactive performance

e�ects of a highly con�gurable problem space could be intractable

in highly-parallel, high-performance environments. Furthermore,

the interactive e�ects of these modes are likely to be non-linear,

complicating e�orts to identify simple but useful analytical models

of performance.

In this paper, we present the COSModel of parallel performance

for dynamic variations in processor speed, memory speed, and

thread concurrency. To the best of our knowledge, this is the �rst

model to accurately capture the simultaneous, combined e�ects of

these three operating modes.

�e COS model is based on a simple observation. Past mod-

els of operating mode performance tend to combine the overlap

of compute and memory performance into either compute time or

memory stall time. However, we have observed that the behav-

ior of overlap when these operating modes change is so complex

that it must be modeled independently of these other times. �is

observation leads to the formulation of a Compute-Overlap-Stall

(COS) Model where each term can be modeled independently to

the others.

In addition to presenting the COS model, we demonstrate how

to capture these important (and independent) parameters on both

Intel servers and the IBM BG/Q system. We also show how the

1C.-H. R. Wu, ”U.S. patent 7352641: Dynamic memory thro�ling for power and
thermal limitations.” Sun Microsystems, Inc., issued 2008.
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COS model can be used to classify the best available models. We

validate our modeling e�orts on 19 HPC kernels and perform ex-

tensive sensitivity analyses to identifyweaknesses. Our COSModel

has more functionality than previously available and the accuracy

is as good as or be�er than best available operating mode models

with prediction errors as low as 7% on Intel systems and 17% on

the IBM BG/Q system.

2 COMPUTE–OVERLAP–STALL MODEL

2.1 COS Model Parameters

�eCompute–Overlap–Stall (COS) model estimates parallel execu-

tion time as the sum of pure compute time (Tc ), overlap time (To ),

and pure stall time (Ts ). More generally,

T = Tc +To +Ts , (1)

where T is total time for a running application.

Figure 1 shows an example execution time pro�le for a simple,

single-threaded application. A single core executes some computa-

tion that triggers two separate, non-blocking memory operations.

As the code executes, portions of time are spent exclusively on on-

chip, in-cache computations; exclusively on o�-chip memory op-

erations; and on some form of overlap between computation and

memory accesses.
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Figure 1: An example of a COS Trace for a simple, single-

threaded application with hardware support for multiple,

simultaneous memory accesses (e.g., multiple loads under

misses).

Figure 1 provides context for de�ning terms of the COS model

more precisely. Tc is the sum of the execution times of an appli-

cation spent exclusively on computation2 or the pure compute

time. In this example, Tc is the sum of the pure compute times

identi�ed at the start and end of the application’s execution. To is

the sum of the execution times of an application spent overlapping

computation and memory operations or the overlap time. In this

example,To is the sum of the overlap times, there are three of these

stage occurrences over the application’s execution. Ts is the sum

of the execution times of an application spent exclusively on mem-

ory stalls or the pure stall time. In this example, Ts is the sum of

2We include the performance impact of on-chip caches in pure compute time.
�is simpli�cation signi�cantly reduces the complexity of the COS model while en-
abling isolation of the performance e�ects of power-performance operating modes.

the pure stall times, there are three of these stage occurrences over

the application’s execution.

2.2 �e COS Trace

�e ordered summation of the terms of the COS model constitutes

a simpli�ed trace of the application. We call this a COS Trace.

More precisely, the 8 stage occurrences for the example in Figure

1 are expressed in the following COS Trace:

T =Tc (1) +To (1) +Ts (1) +To (2) +Ts (2)+

To (3) +Ts (3) +Tc (2)
(2)

Analogously, we propose a general COS Trace as follows:

T =

cP∑

i=1

Tc (i ) +

oP∑

j=1

To (j ) +

sP∑

k=1

Ts (k ) (3)

where cP ,oP , sP are the number of stages corresponding to the

three types of time in the COS trace: the pure compute time (Tc ),

the overlap time (To ), and the pure stall time (Ts ). For Figure 1,

cP = 2, oP = 3, and sP = 3. Predicting parallel execution time

using the COS model involves estimating the e�ect of a system or

application change on the COS Trace3.

2.3 COS Model Notations

In succeeding discussions we will use (fc ) and (f
′

c ) to refer to a

starting CPU frequency and the changed CPU frequency respec-

tively. Moreover, ∆fc denotes the change from fc to f
′

c . We can

de�ne ∆fm and ∆t analogously. We use the shorthand (fc , fm , t )

→ (f
′

c , f
′

m , t
′

) to denote changes to DVFS, DMT/DBT, and thread

count respectively. For example, (fc , fm , t ) → (f
′

c , fm , t ) refers to

an isolated change to CPU frequency while (fc , fm , t )→ (fc , f
′

m , t
′

)

refers to simultaneous memory thro�ling and changes to thread

counts.

2.4 �e Importance of Isolating Overlap

Many existing models of parallel performance ignore overlap [3,

16, 22, 31, 33, 36]. When overlap is considered, the e�ects are ei-

ther captured in the compute time (Tc ) or memory stall time (Ts )

parameters. If overlap is included in Tc , then the model assumes

∆fc e�ects apply equally to the overlap portion. If overlap is in-

cluded inTs , then the model assumes ∆fm e�ects apply equally to

the overlap portion.

Figure 2 shows the stall time (y-axis) for a code region (R1) of

the LULESH OpenMP application kernel [1]. �e CPU voltage/fre-

quency increases from le� to right (x-axis). �e �gure shows the

measured stall time and the predicted stall time for two best-available

performance prediction approaches (stall- and leading-load-based

[16, 22, 33]). Notice that both approaches consistently under-predict

stall time. Furthermore, in another code region (R2) of the Lulesh

OpenMP application (not shown), the same prediction techniques

over-predict stall time.

3�e power-performance operating modes studied include CPU Dynamic Volt-
age and Frequency Scaling (DVFS) and DRAM Dynamic Memory Frequency �rot-
tling (DMT) on Intel architectures; Dynamic Memory Bandwidth �ro�ling (DBT)
on BG/Q architectures; and Dynamic Concurrency �ro�ling (DCT) on both archi-
tectures.
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When stall time dominates, these mis-predictions lead to sig-

ni�cant inaccuracies in execution time prediction. �e e�ects are

exacerbated by the complex computation and memory overlap sce-

narios that a�ect stall and compute time and are more common in

mixed operating modes (DVFS, DMT, and DCT).
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Figure 2: Stall time (y-axis) for varying CPU voltage/fre-

quency settings (x-axis) for the LULESH benchmark on an

x86 system. When stall time dominates, these mispredic-

tions lead to signi�cant inaccuracies in execution time pre-

diction. �ee�ects are exacerbated by the complex computa-

tion andmemory overlap scenarios that a�ect stall and com-

pute time and are more common in mixed operating modes

(DVFS, DMT, and DCT).

2.5 �e Challenge of Isolating Overlap

Figure 3 shows a simpli�ed example for three CPU frequencies

(fc1 < fc2 < fc3) increasing from le� to right. In each sub�g-

ure, core activity and memory activity are shown separately as a

thread progresses in time (x-axis) from le� to right. �e COS trace

is provided for each sub�gure.

In the �rst sub�gure, at the lowest CPU frequency fc1, there

are 4 distinct compute and memory overlap phases in the COS

trace. �is indicates regular memory accesses where the CPU is

busy with work during the memory stall time. More precisely, the

9 stage occurrences for fc1 in Figure 3 are expressed in the follow-

ing COS Trace:

T =Tc (1) +To (1) +Tc (2) +To (2) +Tc (3) +To (3)+

Tc (4) +To (4) +Tc (5)
(4)

�e change from (fc , fm , t ) → (f
′

c , fm , t ) alters the COS Trace

(fc2 in Figure 3) as follows:

T = Tc (1) +To (1) +Tc (2) (5)

�is re�ects a dependency between the resulting COS trace and

CPU frequency. In this case, there is a change in the arrival rate

of the memory requests due to the CPU frequency changes. In

the new con�guration, there are no pure compute gaps between

memory references leading to a change in the number and length

of overlap stages.

Increasing the frequency a second time in this example (fc3 in

Figure 3) alters the COS trace again, resulting in:

T = Tc (1) +To (1) +Ts (1) +To (2) +Tc (2) (6)

�is demonstrates the creation of a pure stall stage that did

not exist in the previous two COS traces (fc1 and fc2) in Figure

!"#$%&'()*+,

-.*/%-$0"#,%

1$23$4+4
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Figure 3: Overlap time and pure stall time are related to com-

putation intensity.

3. We observe similar behaviors for memory thro�ling changes

((fc , fm , t )→ (fc , f
′

m , t )) and for thread changes ((fc , fm , t )→ (fc ,

fm , t
′

)).

2.6 �e Role of Computational Intensity

Estimating the COS terms for simultaneous changes in operating

modes such as (fc , fm , t ) → (f
′

c , f
′

m , t
′

) is even more challenging

than the single CPU speed change described in Section 2.5. In the-

ory, each term of the COS trace is a�ected by all operating mode

changes (∆fc , ∆fm , and ∆t ). In practice, it depends on the system

and application design.

�e initial focus of our work is on shared memory systems run-

ning multithreaded OpenMP applications where parallel threads

are mostly homogeneous and synchronized and the programs use

a bulk-synchronous programming model. �is focus leads to some

simplifying assumptions while still covering a large set of parallel

applications of interest to a broad community of scientists [4, 5, 15,

21, 23, 26, 32].

Table 1 shows the application of these assumptions to reduce

the set of interactions we need to consider for accurate predictions

between system recon�gurations and model parameters. For ex-

ample, to model T
′

c for 7 rows of possible con�gurations, we need

only consider changes to CPU frequency (∆fc ) and thread count

(∆t ). For T
′

o and T
′

s , these assumptions simplify all predictions ex-

cept when all operating modes change simultaneously (fc , fm , t )

→ (f
′

c , f
′

m , t
′

) for any ∆fc , ∆fm , and ∆t . �is explains why our

prediction methods on real systems focus on separating overlap

time T
′

o from stall time T
′

s (see Sections 2.4 and 2.5).

In addition to the system con�guration changes (∆fc , ∆fm , and

∆t ), Table 1 lists CI as a consideration for both overlap T
′

o and

pure stall T
′

s times. CI here stands for Computational Intensity, or

the percentage of memory stall time that is overlapped with useful

work on the CPU.CI determines howmuch stall time is a�ected by

CPU speed (∆fc ) and how much is a�ected by memory thro�ling

(∆fm ).

We conducted statistical analyses to identify a correlation be-

tween stall time and measurable hardware counters available on

most x86 architectures [2]. �rough exhaustive experimentation

for all available con�gurations (fc , fm , t )→ (f
′

c , f
′

m , t
′

), we found

that twowidely available counters—last-level cachemisses (LLCM)

and time-per-instruction (TPI)— e�ectively captured the stall time

e�ects of ∆fc , ∆fm , and ∆t . �is �nding is key to the COS model’s

e�ectiveness since it enables us to use linear approximation meth-

ods to separate pure stall time from overlap stall time. For com-

pleteness, we studied the e�ects of CI on compute overlap but
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Table 1: E�ects on COS model parameters of any starting

con�guration (fc , fm , t ) to any other operating mode con�g-

uration (each row) for changes in processor speed, mem-

ory throttling, and number of threads (∆fc , ∆fm , and ∆t ).

For some con�gurations, we have additionally identi�ed CI

(Computational Intensity) as having signi�cant in�uence

over COS model parameters.

Con�g T
′

c T
′

o T
′

s

f
′

c , fm , t ∆fc ∆fc CI ∆fc CI

fc , f
′

m , t ∆fm CI ∆fm CI

fc , fm , t
′

∆t CI ∆t CI ∆t

f
′

c , f
′

m , t ∆fc ∆fc ∆fm CI ∆fc ∆fm CI

fc , f
′

m , t
′

∆t ∆fm CI ∆t ∆fm CI ∆t

fc ,
′

fm , t
′

∆fc ∆t ∆fc CI ∆t ∆fc CI ∆t

f
′

c , f
′

m , t
′

∆fc ∆t ∆fc ∆fm CI ∆t ∆fc ∆fm CI ∆t

we found that compute time was dominated by e�ects from CPU

speed and thread count and not a�ected signi�cantly by CI .

2.7 Practical Estimation of COS Parameters

We can use the COS trace of Equation 3 to predict the parallel exe-

cution time (T ′) of another system con�guration for any combina-

tion of ∆fc , ∆fm and ∆t . Since the variables may not be directly

measurable, the challenge is to collect accurate approximations

without requiring system design changes or reverting to simula-

tion. In this section we describe one method for predicting T ′ us-

ing direct measurements readily available on most x86 systems.

Several of the parameters of Equation 3 are directly measurable.

Both total time T and the pure stall time Ts are directly measur-

able using the CPU hardware counters available on most modern

platforms [2].

We’ve also observed in our experimental work that overlap con-

sists of a portion a�ected by CPU speed changes (related to com-

pute time and denoted as Toc ) and another portion a�ected by

memory thro�ling (related to stall time and denoted as Tos ). �e

portions vary according to the computational intensity CI of the

application (see Section 2.6).

Under thesemeasurements and observations, the operationmode

change (fc , fm , t ) → (f
′

c , f
′

m , t
′

) resulting in predicted time T
′

be-

comes:

T
′

= [T
′

c +T
′

oc ] + [T
′

os +T
′

s ] (7)

where [T
′

c + T
′

oc ] can be approximated as [T - Ts ] × fc /f
′

c . Mul-

tiplying by the ratio of the CPU speed fc and the newCPU speed f
′

c

follows the dependencies (∆fc ,∆t ) listed in Table 1 for the (fc , fm , t )

→ (f
′

c , f
′

m , t
′

) con�guration for T
′

c . We will discuss how thread

changes a�ect predictions in Section 2.8.

Approximating [T
′

os + T
′

s ] is more di�cult. Table 1 shows that

time for the (fc , fm , t )→ (f
′

c , f
′

m , t
′

) con�guration forT
′

s is a�ected

by a combination of ∆fc , ∆fm , ∆t , and IC . Ignoring the impact of

multi-threading again for now (see Section 2.8), we propose a lin-

ear combination of direct measurements for LLCM and TPI with

direct observations of changes to CPU Speed and memory throt-

tling (f
′

c and f
′

m ). Recall the LLCM and TPI terms capture the

Computational IntensityCI e�ects on the COS trace. �is gives the

following approximation for the remaining portion of Equation 7:

[T
′

os +T
′

s ] = α1 × LLCM + α2 ×TPI + α3 × f
′

c + α4 × f
′

m (8)

Combining our approximations for both sets of terms in Equa-

tion 7, our approximation ofT
′

for a operating mode con�guration

change (fc , fm , t )→ (f
′

c , f
′

m , t
′

) is:

T
′

= [T −Ts ] ×
fc

f
′

c

+ α1 × LLCM + α2 ×TPI + α3 × f
′

c + α4 × f
′

m

(9)

In the next section, we describe how we use training sets and

linear regression to identify the alpha parameters in this equation

to develop a general model for each application in our set of 19.

2.8 O�line Training and Online Prediction

We use a training set measured o�ine to predict online a larger set

of ∆fc , ∆fm , and ∆t con�gurations. Figure 4 illustrates this two

step process.
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Figure 4: O�line training and online prediction.

�e astute reader will notice that Equation 9 contains no term

for the number of threads despite our claim to predict for dynamic

concurrency changes. �e impact of threads is captured in a set of

linear approximations for Equation 9 applied to our training sets.

What follows is an explanation of the algorithm we use to predict

the simultaneous e�ects of ∆fc , ∆fm , and ∆t con�gurations.

Figure 4 and Algorithm 1 describe our sampling techniques in

detail. Basically we gather a set of data for a given application and

take samples at various con�gurations for ∆fc , ∆fm , and ∆t . We

use this data to conduct linear regression on Equation 9 to deter-

mine the values of the four α parameters. For each measurement,

we simultaneously gather execution time (T ), stall time (Ts ), LLCM

values, and TPI values.
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We designed Algorithm 1 to formally describe the process illus-

trated by Figure 4. We de�ne fmin
c , fmin

m , and tmin as the mini-

mum speed se�ing for CPU, minimum thro�ling se�ing for mem-

ory, and the smallest number of threads respectively for a training

set.

Algorithm 1 Train the COS Model for any application

1: for all f
′

m , fmin
m do

2: Measure T ,Ts ,LLCM,TPI for (fmin
c , fmin

m , tmin ) →

(f
′

c , f
′

m , t
′

) ∀ f
′

c , fmin
c and t

′

= 4, 6

3: Measure T ,Ts ,LLCM,TPI for (fmin
c , fmin

m , tmin ) →

(fmin
c , f

′

m , t
′

) ∀ t
′

, tmin

4: end for

5: Use measured data and linear regression to �nd α coe�cients

for Equation 9

6: Use Equation 9 to predict any (fc , fm , t ) → (f
′

c , f
′

m , t
′

) ∀

fc , fm , t and ∀ f
′

c , f
′

m , t
′

for this application

In Algorithm 1, thread behavior is captured by the training set.

Basically, by reapplying Equation 9 to di�erent thread con�gura-

tions (steps 2 and 3 in Algorithm 1) we are able to capture the

e�ects of threads on the COS model parameters using a combina-

tion of direct measurements and linear regression. �ese e�ects

are incorporated in both [T −Ts ] and the LLCM and TPI terms of

Equation 9. �read e�ects are implicitly captured in the algorith-

mic application of Equation 9 and thus not explicitly in the formu-

lation.

For a memory modes, b CPU modes, and c thread se�ings, we

require a ×b × 2 measurements for step 2 in Algorithm 1 and a × c

measurements for step 3 in Algorithm 1. �ese measurements are

captured visually by the hashed squares on the le� side of Figure 4.

�is is compared to our ability to predict a × b × c combinations

using a single training set (see the darker squares on the right side

of Figure 4). We have also determined that of the 19 applications

studied, only 4-6 models are needed to accurately predict T
′

for

all 19 applications. In future work, we are a�empting to reduce

the training sets further for online usage. In the remainder of this

paper, we compare our predictions with direct measurements and

use the resulting COS model for analysis for 19 applications on

Intel x86 and IBM BG/Q systems.

3 EMPIRICAL MODEL VALIDATION

In this section, we validate the COS model on a multi-core ma-

chine using several application benchmarks with di�erent compu-

tational characteristics. We measure the accuracy of the model

by comparing the model’s prediction versus observed values mea-

sured on real hardware.

3.1 Machine Characteristics

We validate the COS model on a cluster comprised of Dell Pow-

erEdge R430 servers. Each node has two Intel Xeon E5-2623 v3

(Haswell) processors and 32 GB of DDR4 memory. Each processor

has four cores and each core supports two hardware threads. �e

Haswell processor supports 16 CPU frequencies ranging from 1.2

to 3.0 GHz. �e memory system supports three bus frequencies:

1.333, 1.600, and 1.866 GHz.

3.2 Application Benchmarks

We employ a set of benchmarks and kernels that represent diverse

computational characteristics appearing in high-performance, par-

allel, scienti�c applications. �e application benchmarks include

the following codes:

• LULESH (CORAL benchmark suite4, 5 code regions)

• AMGmk (CORAL benchmark suite, 3 kernels)

• Rodinia benchmark suite (6 applications)

• pF3D from LLNL (5 kernels)

LULESH is an explicit hydrodynamics proxy application that

contains data access pa�erns and computational characteristics of

larger hydrodynamics codes at LLNL [1]. We use �ve code re-

gions within an OpenMP version of LULESH that represent dif-

ferent phases of the application and consume over 90% of the run-

time [27]. �ese �ve code regions (R1 to R5) were selected in col-

laboration with domain scientists to isolate the code regions with

a diverse set of computational intensity characteristics.

AMGmk includes three compute intensive kernels from AMG,

an algebraicmultigrid benchmark application derived directly from

the BoomerAMG solver in the Hypre linear solvers library [18].

�is code is used broadly in a number of applications [26] of in-

terest to the multi-physics community. �e default Laplace-type

problem is built from an unstructured grid with various jumps and

anisotropy in one part. We label these kernels K1 to K3.

Rodinia is a benchmark suite for heterogeneous computing [7].

We use six OpenMP codes from the domains of data mining, graph

algorithms, physics simulation, molecular dynamics, and linear al-

gebra: Kmeans, k-Nearest Neighbors (kNN), Breadth-First Search

(BFS), HotSpot, LavaMD, and LU Decomposition (LUD). Compo-

nents of this application suite such as HotSpot are of high interest

to domain scientists for use in structured grid applications [4, 5,

21]. �ere is also high demand for optimized linear algebra solvers

[32, 37] such as kNN, Kmeans, and LUD that are used regularly in

many high-performance applications and systems.

pF3D is a massively parallel application that simulates laser-

plasma interactions at the National Ignition Facility at LLNL [24].

�is simulator aids scientists in tuning plasma and laser beam ex-

periments crucial to experimental physics [23]. �e pF3D kernels

derive from the functions that consume the most time during a typ-

ical pF3D run and are wri�en in OpenMP. We use the following

kernels: Absorbdt, Acadv K1, Acadv K2, APCPFT, and Advance�.

In total we used 5 + 3 + 6 + 5 = 19 code regions and applica-

tion kernels to evaluate the proposed model. For simplicity, we

refer to these as codes or applications although they are application

benchmarks.

3.3 Performance Prediction Accuracy

We compare the execution time predicted using modeling with the

execution time observed by running the codes. First, for each code,

we train its model o�ine (see Section 2.8) using a sample of ∆fc ,

∆fm , and ∆t as shown in Table 2. With these con�gurations we

derive the model coe�cients. At this point, we can use the model

to predict the execution time of any given con�guration. Second,

we run the code under the con�gurations not in the training set

4See h�ps://asc.llnl.gov/CORAL-benchmarks
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(a) Average prediction error.
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(b) Standard deviation of the prediction error.

Figure 5: Model prediction accuracy for a wide-range of codes.

for a total of 225 con�gurations. Each of these is run 20 times to

smooth out system noise e�ects and the average execution time is

calculated. �ird, we do this for all 19 codes.

Table 2: We use 4- and 6-thread con�gurations to predict 8,

10, 12, 14, and 16 thread con�gurations where ∆fc=16modes,

∆fm=3 modes, ∆t=7 thread con�gurations.

Total ∆fc (GHz) ∆fm ∆t (num. threads)

Training con�gurations

16 × 3 × 2 All All 4, 6

1 × 3 × 5 1.2 All 8, 10, 12, 14, 16

Con�guration space

16 × 3 × 7 All All 4, 6, 8, 10, 12, 14, 16

Figure 5 shows themodel prediction accuracy for all of the codes.

Figure 5a shows the average prediction error of each code across

the entire con�guration space not in the training set. �e predic-

tion error is calculated as follows (also shown in Figure 4):

Err% =
|Tmeasure −Tpredict |

Tmeasure

Figure 5 shows that the average prediction error per code is signif-

icantly low: varying from 1.4% to no more than 7%. Most of the

codes though have an error lower than 4%. �is demonstrates the

proposedmodel is highly accurate for a broad range of applications.

We also measure the standard deviation of the prediction error as

shown in Figure 5b. �e standard deviations for all the codes is

within 4.5%. Our proposed model is signi�cantly accurate for the

three dimensional con�guration space for all 19 applications.

To verify that the tested codes include a wide range of di�er-

ent computational characteristics, we measured the sensitivity of a

subset of our codes to certain parameters such as processor speed.

To capture an application’s sensitivity, we focus on pressure to the

memory systemmeasured as last level cache misses per second. We

expect, for example, lowmemory pressure for compute-intense ap-

plications (see Section 2.6) and high pressure formemory bandwidth-

intense applications.

Figure 6 shows last-level cache misses (LLCM) per second as a

function of di�erent processor andmemory speeds and thread con-

currency. We employ two processor speeds (1.2 and 3.0 GHz), two

memory speeds (1.333 and 1.866 GHz), and two thread counts (4

and 16). Each con�guration is represented as a tuple of the follow-

ing form:

(C: cpu frequency,M:memory frequency,T: num threads)
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Figure 6: Impact of con�guration on memory pressure.

First, we focus on one con�guration: (C1.2, M1.333, T4). Codes

including kNN, AMG K1 and K2, and LULESH R4 show low mem-

ory bandwidth presssure. �ismatches our expectation sinceAMG

K1 andK2 are compute-intense kernels as is LULESHR4 [28]. While

LULESH R1 and R3 are among the ones with the highest usage,

Kmeans, BFS, and LULESH R2 exercise higher memory bandwidth

utilization. �ese last two have been shown to be memory band-

width intensive [27].

Second, we observe that some codes are signi�cantly a�ected by

di�erent parameters such as memory speed and processor speed.

LULESH R1 for example shows increased memory pressure with

increases in processor speed and also with increases in memory

speed. R1 has a high number of instructions per cycle (IPC) that

bene�t from the increased processor speed shi�ing the pressure to

the memory system. Except for R3, other regions of LULESH show
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Figure 7: Impact of prefetching on prediction accuracy running LULESH.

a similar pa�ern but at di�erent scales. Kmeans, AMG K1, and

AMG K2 show signi�cant sensitivity to processor speed because

of their linear algebra computations.

�ird, there are codes that show low sensitivity to di�erent con-

�gurations. kNN is a clear example of this. BFS is not a�ected

by increases in processor performance since there is li�le com-

putation during the graph traversals but does show sensitivity to

memory performance as a result of the operations fetching undis-

covered graph nodes from memory. LULESH R3 is an interesting

case since there are small changes with either processor or mem-

ory speed. �is is the result of the code being almost exclusively

memory bandwidth bound.

�us, Figure 6 shows that the codes studied in this work capture

a diverse set of computational characteristics. Furthermore, the re-

sources in the critical path for some of these codes can change sig-

ni�cantly with di�erent con�gurations. For example, AMG K2 run

with a 3.0 GHz processor becomes signi�cantly dependent on the

memory system when increasing memory frequency from 1.333 to

1.866 GHz. �e low prediction error of the proposed COS model

shows that we can capture the e�ect of these complex interactions

accurately.

3.4 COS on Intel Sensitivity Analysis

3.4.1 Memory Prefetching. During development, we noticed the

COS model accuracy was sensitive to prefetch se�ings. �e ef-

fects of hardware and so�ware prefetching on performance are

captured in changes to the COS Trace described by Equation 3. For

example, a successful prefetch could increase overlap by preemp-

tively importing data from main memory to cache. An incorrect

prefetch however causes cache pollution and could lead to more

overlap stages and stall stages.

To be�er understand these e�ects, we ran LULESH with hard-

ware prefetching enabled and hardware prefetching disabled and

analyzed the results using COS. Figure 7 shows these results using

4 Intel prefetchers: DCU streamer prefetcher (load data to L1 data

cache triggered by an ascending access of recently loaded data),

DCU IP prefetcher (load data to L1 data cache based on load in-

struction and its detected regular stride), adjacent line prefetcher

(fetch cache line to L2 and last level cache with the pair line), and

hardware (streamer) prefetcher (fetch cache lines to L2 and last

level cache based on detection of forward or backward stream of

requests from L1).

A�er enabling all the hardware prefetchers, the accuracy of our

predictor worsens as expected. For LULESHR1, the change in aver-

age prediction error (Figure 7a) and standard deviation (Figure 7b)

are both very minimal. In contrast, LULESH R4 has the largest

di�erential (4x) in accuracy when prefetching is enabled. �is is

likely due to a large increase in overlap when prefetching is en-

abled since the R4 region is dominated by compute when overlap

is disabled.

When prefetching is disabled, we get excellent accuracy using

an extrapolation technique to predict con�gurations not observed

directly in the training set. To improve the accuracy of COS for

prefetching, we switched to an interpolation technique using 4-

and 16-thread con�gurations to predict 6-, 8-, 10-, and 12-thread

con�gurations.

�e results validate that the COS model based predictor can suc-

cessfully capture the impact of DVFS, DMT, and DCT simultane-

ously with prefetching but at the expense of predictor �exibility.

�e COS approximation techniques implemented in the Intel sys-

tems could be extended to be�er capture the e�ects of prefetching

overlap on performance using approaches similar to those used for

power-performance modes.

3.4.2 ROB and MSHR. �e sizes of the reorder bu�er (ROB)

and miss status holding register (MSHR) increase with each gen-

eration in CPU design. �e ROB reorders instructions to increase

instruction-level parallelism and the MSHR increases the number

of loads that can be handled under a previous miss. �ese tech-

niques have the potential to increase overlap and can impact the

accuracy of the COS predictor on Intel Systems

We picked nine applications to ascertain the sensitivity of COS

to the ROB and MSHR.�e Intel hyperthreading design enables us

to indirectly control the size of the ROB and MSHR. For a single

thread per core, the ROB and MSHR are �xed in size. However,

if we overload a core with multiple threads, the ROB and MSHR

resources are divided among the threads. We exploit this indirect

control in our experiments.

In our experimental setup, we identify two basic con�gurations:

1) 4-, 6-, and 8-threadswhere atmost oneOpenMP thread ismapped

to a core, and 2) 10-, 12-, 14-, and 16-threads where at least two
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Figure 8: Impact of ROB and MSHR on prediction accuracy.

cores run two OpenMP threads. As mentioned, these Intel ma-

chines have 8 cores each with two hardware threads per core.

For these experiments we disable prefetching and use our ex-

trapolation approach with 4- and 6-threads for training. Figure 8

shows that both average error and the standard deviation for 8

threads aremuch be�er than all the other con�gurations of threads.

�ere appears to be a correlation between the least accurate

of our earlier experiments, ABSORBDT (Figure 5), and the ROB

and MSHR results. �ough further experimentation is needed, it

is likely that ABSORBDT is sensitive to ROB and MSHR sizes and

we could consider improvements to our approximations of the COS

model that incorporate these characteristics.

4 CROSS-ARCHITECTURE VALIDATION
USING IBM’S BLUE GENE/Q

To demonstrate the portability and scalability of our model we val-

idate COS on IBM’s Blue Gene/Q (BG/Q) architecture. BG/Q is

a scalable, energy e�cient, high-performance system. �e BG/Q

architecture is capable of dynamic memory bandwidth thro�ling

(DBT), wherememory bandwidth is dynamically controlled through

insertion of a con�gurable number of memory idle cycles between

each DDR memory request.

BG/Q’s DBT is di�erent from the dynamic memory frequency

thro�ling (DMT) common to Intel systems. While memory fre-

quency thro�ling changes the latency of eachmainmemory access,

bandwidth thro�ling reduces the e�ective bandwidth through in-

serting idle cycles (or no-ops or bubbles) in the instruction pipeline.

�e number of memory idle cycles inserted is called the thro�ling

threshold and ranges between 0 and 126. Studies have shown this

parameter can a�ect the performance of applications as well as

their power consumption [29].

�e thro�ling threshold a�ects those memory accesses that oc-

cur within the threshold window. For instance, if the time between

two dependentmemory requests at thememory controller is larger

than the thro�ling threshold, the latency of thesememory requests

is not a�ected. When the time between two memory requests is

smaller than the threshold, the latency of the second memory re-

quest would increase by the con�gurable number of memory idle

cycles.

Unlike the Intel system, BG/Q is not capable of CPU frequency

scaling and thus we limit our validation of COS to variations in

memory bandwidth and thread concurrency. BG/Q has only two

levels of cache, L1 and L2, compared to 3 levels of cache on our x86

experimental system.

4.1 Approximating the COS Trace

Assumewe changememory speed from fm to f
′

m (∆fm ) using DBT.

To illustrate the e�ect on performance, Figure 9 shows the execu-

tion time in cycles (y-axis) for di�erent thro�ling thresholds rep-

resented by number of memory idle cycles (x-axis) for all regions

of the LULESH application. For each region (R1, R2, R3, R4, R5)

of LULESH, two di�erent phases can be distinguished: 1) a nearly

�at or constant segment in the function at low thresholds and 2)

a linearly increasing function at a threshold that appears to be dif-

ferent for each region. �is forms a hockey stick shaped function

for each region with a di�erent in�ection point. In a way, this is

an example of Amdahl’s law applied to an architectural enhance-

ment. A portion of the code (phase 1 in this example) is not a�ected

by the enhancement (e.g., insertion of memory idle cycles) while

a portion of the code (phase 2 in this example) is a�ected by the

enhancement. While this is an oversimpli�cation in some ways,

it implies that we can potentially use a piece-wise function to ap-

proximate the performance for these codes if we can identify the

in�ection point (i.e., the number of memory idle cycles) where per-

formance loss begins.

Following a series of experiments, we determined the in�ection

points correlate to characteristics of a region’s memory access be-

havior. We approximate the COS Trace expressed by Equation 3

using a piecewise function of performance:

T =




t0 if fm ≤ a

b fm + t0 if fm > a
(10)
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Figure 9: Impact of memory bandwidth throttling on

LULESH.

where t0 is the performance with no memory thro�ling, a is the

threshold of the in�ection point, and b is the slope of the linear

function.

For the constant function (T = t0), memory thro�ling has li�le

impact on the COS Trace: performance does not change by insert-

ing memory idle cycles. �is can be explained with the following

two cases. First, the gap between most of the application memory

accesses is larger than the thro�ling threshold. �e number of in-

serted memory idle cycles is too small to cause delays in memory

accesses (Ts is not changing) and thus total execution time. In this

case, inserting idle cycles does not change Tc ,To , and Ts . Second,

the gap between memory accesses is smaller than the thro�ling

threshold, but the memory accesses overlap with processor com-

putation. Inserting idle cycles can delay issuing new memory re-

quests but does not change the length of any of the three stages,

Tc ,To , and Ts .

�e in�ection point a in Equation 10 depends on thememory ac-

cess pa�erns of applications. A correlation analysis among some

critical compute/memory related hardware events (e.g. �oating

point operations, L2 cache misses per second, etc.) shows that its

value is highly related to memory intensity: L2 cache misses (L2M)

per instruction (INST). By applying linear regression, we can ap-

proximate the value of a with the following:

a = α ×
L2M

INST
+ c1

where α is a coe�cient and c1 is a constant and both will be

determined using linear regression.

�e impact of memory thro�ling on the second segment is lin-

ear (T = b fm + t0). �is can be explained with the COS Trace as

follows. For a su�ciently large number of idle cycles, application

memory accesses cannot overlap with computation. In this case,

the length of the pure compute stages would not changewithmem-

ory thro�ling; the length of the overlap stages would be zero; and

the length of the pure stall stages would change linearly with the

number of memory idle cycles inserted. Approximating the num-

ber of memory accesses with L2 misses, the impact on the COS

Trace can be expressed as follows:

∆Tc = 0

∆To = 0

∆Ts = β × L2M × ∆fm

where ∆Tc , ∆To , and ∆Ts are the resulting change to execution

time for each respective phase. �us, we can approximate the value

of b as follows:

b = β × L2M + c2

where β is a coe�cient and c2 is a constant and both will be deter-

mined using linear regression.

Based on the equations above, we can predict performance us-

ing Equation 10 as follows:

T =




t0 if fm ≤ α × L2M/INST + c1

(β × L2M + c2) × fm + t0 if fm > α × L2M/INST + c1
(11)

4.2 O�line Training and Online Prediction

We apply linear regression to approximate the model coe�cients

of Equation 11. �e con�guration space includes two parameters:

the thro�ling threshold (∆fm ) and the number of threads (∆t ). �e

threshold ranges from 0 to 126 idle cycles and the number of threads

from 4 to 64 with an interval of 4. �e details of the training con-

�gurations and the overall con�guration space is given in Table 3.

We use the �ve code regions of LULESH to train the model. Each

region has its own trained coe�cients.

Table 3: �e training con�gurations and the overall con�gu-

ration space on BG/Q. �e Total column shows the number

of con�gurations.

Total ∆fm ∆t (num. threads)

Training in�ection point a

127 × 16 0 - 126 cycles 4, 8, 12, …, 64

Training slope b for Region 1

27 × 14 100 - 126 cycles 12, 16, …, 64

Training slope b for Region 2

16 × 10 100 - 115 cycles 28, 32, …, 64

Training slope b for Region 3

11 × 12 35 - 45 cycles 20, 24, …, 64

Training slope b for Region 4

16 × 9 100 - 115 cycles 32, 36 , …, 64

Training slope b for Region 5

11 × 11 65 - 75 cycles 24, 28, …, 64

Con�guration space

127 × 16 0 - 126 cycles 4, 8, 12, …, 64

We use the model to predict the performance of the �ve code

regions of LULESH for those con�gurations in the con�guration

space that are not in the training set. To measure the accuracy

of the model, we compare these predicted values with the perfor-

mance measured by running the same con�gurations on the ma-

chine.

Figure 10 shows the average error and standard deviation of our

model. Four of the �ve code regions show a reasonable average

error, around 10% or less. Region 2, however, shows a large average

error of 17%.

�ere are several factors that a�ect the model accuracy of the

BG/Q implementation of the COS model. First, our experiments
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(a) Average prediction error.
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(b) Standard deviation of the prediction error.

Figure 10: Multivariate linear regression of LULESH on IBM BG/Q system.

on BG/Q included prefetching, which makes the overlap time To
more complex as observed on the Intel system. On BG/Q we used

L2 cache misses to represent memory pressure similar to the Intel

system. We could relax this requirement and use the number of

load and store operations on BG/Q for our approximations. �is

may improve accuracy.

Second, in some cases the value of amay not be strictly constant

but a linear function with a small slope value. �e number of idle

cycles that can be inserted (integers) does not provide �ne-enough

granularity to estimate a more accurately.

�ird, we used a small number of sample con�gurations for

training a because we limited our con�guration space to only a

subset of the available number of threads. We expect that a larger

space using all 64 (from 1 to 64 threads) con�gurations along the

∆t dimension would have resulted in be�er accuracy.

5 LIMITATIONS AND DISCUSSION

We have demonstrated the use and accuracy of the COS model for

predicting the performance of a set of DVFS, DMT/DBT, and DCT

con�gurations. �e model can be used in a so�ware or hardware

implementation to allocate or deallocate resources to the working

threads in a parallel application. �is is an advantage to a parallel

scheduler or runtime system.

As mentioned the key concept of the COS model is the isola-

tion of overlap. While in an abstract sense this is straight forward,

we show in Sections 2.4 – 2.6 that empirically isolating overlap

is wrought with challenges. We resolved a number of these chal-

lenges using the assumption of regular parallel applications where

threads are mostly homogeneous and computation proceeds in a

bulk synchronous way with no other dependencies among threads.

�is leaves a number of limitations to the model that must be ad-

dressed to consider irregular parallel codes (e.g., heterogeneous

threads, asynchronous, cross-thread dependencies).

Overlap types In our earlier discussions, we simpli�ed the def-

inition of overlap into computation overlap and memory overlap.

In general, overlap can also occur between multiple threads on a

single core/CPU or across multiple cores/CPUs accessing the same

memory. Under our assumptions, these don’t a�ect the COS Trace

much, but these must be considered for irregular parallel codes.

Computational intensity Computational intensity (CI ) has

impact on the overlap as discussed earlier. A key insight gained

from this work is that CI can be used to predict the impact of si-

multaneous con�guration changes in CPU, memory, and threads

on overlap. More overlap types, combinedwith irregular codes, are

likely to make accurate prediction more challenging. �ere could

also be non–CI e�ects that we’ve not accounted for in parallel ir-

regular applications.

Role of Co-design �ese challenges could be alleviated some-

what by improvements in our ability to directly measure the over-

lap of parallel codes. �is could be accomplished in so�ware, but

would be most e�ective when co-designed with hardware. Our

work indicates that there are meaningful representative hardware

counters that give insight to overlap and computational intensity,

but they are indirect at best. Furthermore, this data is usually lim-

ited to an individual thread with no context for other concurrent

threads on the same core or CPU. Mechanisms for tracking this

type of information could vastly improve our understanding of

overlap as well as our ability to optimize parallel applications and

systems.

6 RELATEDWORK

To the best of our knowledge, this work is the �rst to propose an

analytical performance model that captures the simultaneous ef-

fects of DVFS, DCT, and DMT/DBT on the performance of multi-

threaded applications on real systems.

Table 4 provides a synopsis of work most closely related to ours.

�ere has been extensive work focused on modeling the e�ects of

CPUDVFS on performance using stall-based approaches [22]; lead-

ing loads [16, 22, 33]; CRIT-BW, a leading load derivative [31]; and

DEP-BURST, a CRIT-BW derivative [3]. While all of these consider

the e�ects of out-of-order execution and non-blocking caches, only

DEP-BURST considers multithreading using a critical path analy-

sis to determine which core to boost.

Table 4 shows how the resulting CPU DVFS performance mod-

els capture the characteristics of the COS model: Tc , To , Ts from

Equation 1. Stall-based approaches assume the CPU DVFS a�ects

overlap time in the sameway it a�ects pure compute time and thus

combine Tc and To . �ey also purport that pure stall time (Ts ) is

constant with changes in CPU frequency – this is in direct con-

trast to our �ndings that stall time is a�ected by CPU frequency

(see Figure 2).
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Table 4: Summary of existing performance models and the proposed COS model. OOO Exec and NB Cache refer to processor

out-of-order execution and non-blocking cache, respectively.

Model Predicts Under Considering On Captures

DVFS DMT DCT Multithread OOO Exec NB Cache Tc To Ts

Stall-based Runtime ✔ ✔ ✔ Simulation

Leading loads Runtime ✔ ✔ ✔ Simulation

CRIT-BW Runtime ✔ ✔ ✔ Simulation

DEP-BURST Runtime ✔ ✔ ✔ ✔ Simulation

MemScale CPI ✔ Simulation

CoScale CPI ✔ ✔ Simulation

Joint # micro-ops ✔ ✔ ✔ ✔ Real system

COS Runtime ✔ ✔ ✔ ✔ ✔ ✔ Real system

�e leading loadmodel and its derivatives combine overlap time

(To ) with pure stall time (Ts ) and assume the combined value is con-

stant while Tc is proportional to CPU frequency. �is assumption

leads to inaccuracies since the impact of CPU frequency onTo can

be quite di�erent from Tc and Ts – as we discussed in Sections 2.4

– 2.7.

Su et. al. [35] is the only work we know of that implements

the leading load model on real systems. �is is the most accurate

model available for a real system but it only models DVFS on AMD

architectures. �e COS Model implementations in this paper are

as accurate or be�er than this and model the combined e�ects of

DVFS, DMT/DBT, and DCT across multiple architectures. Su et.

al. also showed that the leading load approach is less accurate for

memory intensive applications and that the accuracy of the leading

load model is highly dependent on the level of memory bounded-

ness – these match our �ndings as well.

Table 4 also shows a comparison with memory power perfor-

mance modeling tools. Deng et. al. [12, 13] presented a perfor-

mance model for memory frequency scaling (MemScale and Multi-

Scale) of single threaded applications on in-order processors. �ey

made similar assumptions as those in the CPU DVFS models that

the overlap time (To ) is combined with pure compute time (Tc ).

Deng et. al. [11] created CoScale to extend MemScale to consider

DVFS. �e accuracy is very good for single threaded applications

on in-order processors. But the limiting combination of To and Tc
remains.

Sundriyal and Sosonkina [36] proposed the ”Joint” performance

model that considers the simultaneous e�ects of CPU DVFS and

DMT. However, the model estimates To as a constant for all ap-

plications on a single system. �is contradicts our �ndings that

overlap is a�ected by CPU frequency (see Figure 2).

Less directly related work relevant to our discussions include:

David et al. [10] investigated the impact of memory frequency

scaling on power and performance and proposed a model for real

systems; Li et al. studied the thro�ling interface on IBM BG/Q

systems and demonstrated its ability to optimize system e�ciency

[29]; Ercan et. al. [14] presented a heuristic runtime solution for

coordinating CPU and memory frequencies to improve energy ef-

�ciency; Curtis-Maury et al. created heuristic models that manage

DVFS and DCT simultaneously for multi-threaded applications [8,

9, 20, 25, 30].

7 CONCLUSIONS AND FUTUREWORK

In this paper, we propose the COS Model of parallel performance

to accurately capture the combine e�ects of DVFS, DMT/DBT, and

thread concurrency on real systems. We applied the COS model

to both Intel and IBM architectures within 7% and 17% accuracy

for a set of 19 important applications. �e key insight to the COS

model is the separation of memory and compute overlap from pure

compute and pure memory stalls. �is separation enables more ac-

curate approximations and a straightforward methodology that is

capable of modeling the complexity introduced with concurrency.

A key limitation of the model is the focus on structured parallel

codes that while representative of many important applications

precludes accurate use on irregular parallel codes for now. Despite

the limitations, we provide strong evidence that the fundamental

focus on overlap in the COS model will be key to steering future

high-performance systems and applications to maximize their ef-

�ciencies. In future work, we plan to explore extending the COS

model to irregular parallel applications in both OpenMP and MPI.

We also plan to adapt the techniques described for use in runtime

systems.
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