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ABSTRACT

When interpolating computing system performance data, there are many input parameters that must be
considered. Therefore, the chosen multivariate interpolation model must be capable of scaling to many di-
mensions. The Delaunay triangulation is a foundational technique, commonly used to perform piecewise
linear interpolation in computer graphics, physics, civil engineering, and geography applications. It has
been shown to produce a simplex based mesh with numerous favourable properties for interpolation. While
computation of the two- and three-dimensional Delaunay triangulation is a well-studied problem, there are
numerous technical limitations to the computability of a high-dimensional Delaunay triangulation. This
paper proposes a new algorithm for computing interpolated values from the Delaunay triangulation without
computing the complete triangulation. The proposed algorithm is shown to scale to over 50 dimensions.
Data is presented demonstrating interpolation using the Delaunay triangulation in a real world high perfor-
mance computing system problem.

Keywords: Delaunay triangulation, multivariate interpolation, performance, performance variability, high-
dimensional data

1 INTRODUCTION

High performance computing (HPC) system performance is a topic of significant importance in the scientific
community. There are many measures by which HPC performance can be evaluated, such as throughput,
energy consumption, and compute time for a given task. Additionally, since each of these measures tends
to fluctuate stochastically between independent runs, various summary statistics such as the mean, median,
maximum, minimum observed value, or variance can be collected. Furthermore, each of these measures
is generally affected by numerous factors, such as system specifications, system configuration, application
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type, and application dependent inputs. In this way, each measure can be thought of as a function of various
system and application level parameters.

For a performance evaluator benchmarking a machine, each of these measures could easily be collected for
a finite set of system and application “signatures” by running several applications over various machine con-
figurations (with multiple runs at each configuration). After collecting the data, suppose an evaluator wanted
to predict performance measures for some different signature(s). Assuming that there is an underlying rela-
tionship between the measured statistics and the set of system and application parameters that contribute to
the signature, it is reasonable to make this prediction with a multivariate interpolatory model.

Given a set of data points, an interpolant is an approximation of the underlying function f that exactly
matches all given values. A multivariate interpolant is characterized by the presence of more than one
input variable. Therefore, a multivariate interpolant of f is a function over d-tuples of input parameters
in the domain of f , where the domain of f has typically been mapped to a subset of Rd . There are many
parameters that can affect the performance of a HPC system, and therefore the dimension of the space Rd

could be quite large.

A triangulation of a set of points P in Rd is a division of the convex hull of P, denoted CH(P), into d-
simplices with vertices in P. The Delaunay triangulation of P, denoted DT (P), is a particular triangulation
defined in terms of the empty circumsphere property, and is commonly used as an interpolatory mesh in
fields such as geographic information systems (GIS), civil engineering, physics, and computer graphics.
Two- and three-dimensional Delaunay triangulations (Delaunay triangulations of points in R2 and R3) are
readily computable, but there are theoretical limitations to the computability of a high-dimensional Delaunay
triangulation.

The rest of the paper is organized as follows. Section 2 will discuss background related to the theoreti-
cal advantages and computability of the Delaunay triangulation. Section 3 presents a new algorithm for
interpolating high-dimensional data with the Delaunay triangulation. Section 4 contains performance data
demonstrating the scalability of the proposed algorithm. Section 5 details the predictive performance of the
proposed algorithm for a four-dimensional HPC system interpolation problem. Section 6 outlines future
work.

2 BACKGROUND

2.1 The Delaunay Interpolant

The Delaunay triangulation is defined as the geometric dual of the Voronoi diagram, or equivalently, as any
triangulation satisfying the empty circumsphere property defined below (Bowyer 1981, de Berg et al. 2008,
Watson 1981). See Figure 1 for a visual.

Definition 1. A Delaunay triangulation DT (P) of a set of points P in Rd is any triangulation of P such that
for each d-simplex s ∈ DT (P), the interior of the sphere circumscribing s contains no point in P.

The Delaunay triangulation exists for every nonempty finite set of points P in Rd that do not all lie in the
same lower-dimensional linear manifold in Rd (or equivalently, if CH(P) has nonzero volume). This is a
direct corollary to the Delaunay triangulation’s duality with the Voronoi diagram. Note that the existence of
DT (P) requires that n (the size of P) be greater than or equal to d +1, otherwise all n points will lie in the
same n−1-dimensional linear manifold trivially. In the context of interpolation, the degenerate case where
DT (P) does not exist and n ≥ d + 1 can be seen as an over-parameterization of the underlying function f .
The points are said to be in general position if the Delaunay triangulation exists, and no d + 2 points in P
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Figure 1: A triangulation in R2 (left) and the Delaunay triangulation (right).

lie on the same d −1-sphere; in this case the Delaunay triangulation of P is unique (Cignoni, Montani, and
Scopigno 1998; de Berg et al. 2008).

Given a triangulation T of P and function values fi = f (xi) for all xi ∈ P, f can be interpolated at any point
q ∈CH(P) using a piecewise linear interpolant f̂ defined as follows: Let s be a d-simplex in T with vertices
s1, s2, . . . , sd+1 and q ∈ s. Then q = ∑

d+1
i=1 wisi, ∑

d+1
i=1 wi = 1, wi ≥ 0, i = 1, . . . , d +1, and

f̂ (q) = f (s1)w1 + f (s2)w2 + . . .+ f (sd+1)wd+1. (1)

It is common to define f̂ using DT (P) since the Delaunay triangulation enjoys several properties that are
considered optimal over all simplex based interpolation meshes (Omohundro 1989, Rajan 1994). Conse-
quently, the Delaunay triangulation finds wide use as a model for multivariable piecewise linear interpolation
in fields such as GIS, civil engineering, physics, and computer graphics (de Berg et al. 2008, Schaap and
Van De Weygaert 2000).
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Figure 2: The 2D Delaunay triangulation of height data for a sea mountain is used to construct a piecewise
linear model of the mountain in Matlab.

2.2 Related Works and Challenges

The two- and three-dimensional Delaunay triangulation (triangulations of points in R2 and R3) can be effi-
ciently computed in O(n logn) time (Su and Drysdale 1995). In order to compute an interpolated value f̂ (q)
for some two- or three-dimensional point q ∈CH(P), one must also locate the simplex in DT (P) containing
q. This simplex can be located using the “jump-and-walk” algorithm in sublinear expected time (Mücke,
Saias, and Zhu 1999). Given this simplex, it is trivial to compute f̂ (q) using (1).
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However, in higher dimensions, there is a theoretical limitation to the computability of the Delaunay triangu-
lation. In the worst case, a d-dimensional Delaunay triangulation of n points could contain up to O(n⌈d/2⌉)
simplices (Klee 1980). Therefore, the lower bound on the worst case time complexity for computing DT (P)
is O(n⌈d/2⌉). Furthermore, in the worst case, O(n⌈d/2⌉) space is required to store DT (P). It is important to
note that in the common case, significantly fewer than n⌈d/2⌉ simplices will be contained in DT (P). How-
ever, the common case size still tends to grow exponentially with respect to d (Boissonnat, Devillers, and
Hornus 2009).

Current state-of-the art Delaunay triangulation techniques generally scale to six or seven dimensions for
large input sets and focus on either minimizing compute time in the general case (Barber, Dobkin, and Huh-
danpaa 1996) or minimizing the storage overhead (Boissonnat, Devillers, and Hornus 2009). Others have
aimed to avoid the scalability problem by computing alternative simplical complexes with still favourable
topological properties and improved scalability (Choudhary, Kerber, and Raghvendra 2016).

3 PROPOSED ALGORITHM

In order to interpolate over large data sets where the independent variables span many dimensions (such as
system performance data sets), a more scalable approach to the Delaunay triangulation is required. Since it
is intractable to compute the entire Delaunay triangulation in large dimensions, the following observation is
useful: Given a set of points P in Rd , one can compute the Delaunay interpolant f̂ (q) at a point q ∈CH(P)
knowing only the simplex s ∈ DT (P) such that q is in s. It should be noted that q could lie on a face shared
by multiple simplices in DT (P). However, in these cases, f̂ (q) will be the same regardless of the simplex
chosen since only the vertices shared by all containing simplices will contribute to f̂ (q). This observation
reduces the problem of computing the entire Delaunay triangulation to that of computing a specific simplex
in the Delaunay triangulation.

3.1 Algorithm Outline

It is possible to grow an initial Delaunay simplex using any point in P as the starting vertex. This approach
is described as the basis for both incremental construction and divide and conquer algorithms in Cignoni,
Montani, and Scopigno (1998). Given a point q ∈CH(P) to interpolate at and a simplex s defined by points
in P, it must be the case that q is either in s, or q is across the hyperplane defined by at least one of the facets
of s. Therefore, given any s not containing q, one can construct a new Delaunay simplex s∗ closer to q by
completing a facet of s that is shared with s∗. The technique used for completing an open facet of a simplex
is outlined in Cignoni, Montani, and Scopigno (1998).

Using this methodology and a deterministic variant of the “walk” described in Mücke, Saias, and Zhu (1999),
it is possible to continually advance toward the simplex containing q via an iterative process. Note, that for
every d-simplex s ∈ DT (P) and q ∈Rd , q is a unique affine combination of the vertices of s. Furthermore, if
q is in s, then this affine combination will also be convex by the definition of a simplex. Therefore, one can
terminate based on the nonnegativity of the affine weights for q with respect to the vertices of the current
simplex s. Conveniently, upon termination, the convex weights for q are the exact weights needed to linearly
interpolate at q within s, as defined previously in (1). Pseudo code for the proposed algorithm is provided
below.

Algorithm.
Let P be an array of points in Rd .
Let q ∈CH(P) be a point to interpolate at.
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Let fi = f (xi) be known for all xi ∈ P, and let f (s) =
(

fi1 , fi2 , . . . , fid+1

)
for d-simplex s with vertices

xi1 , xi2 , . . . , xid+1 .
Let MakeFirstSimplex(P) be a function that constructs an initial Delaunay simplex from points in P.
Let CompleteSimplex(σ , q, P) be a function that completes the facet σ with a point from P that is on the
same side of the hyperplane containing σ as q.
Let AffineWeights(q, s) be a function that returns the affine weights that give q as a combination of the
vertices of s.
Let MinIndex(w) return the index of the most negative element wi.
Let DropVertex(s, i) return the facet of s that results from dropping vertex i.
The following algorithm computes the interpolant f̂ (q) using the Delaunay triangulation of P.

s = MakeFirstSimplex(P);
w = AffineWeights(q, s);
while wi < 0 for some 1 ≤ i ≤ d +1 do

i = MinIndex(w);
σ = DropVertex(s, i);
s = CompleteSimplex(σ , q, P);
w = AffineWeights(q, s);

end while
return f̂ (q) = ⟨w, f (s)⟩ (inner product);

3.2 Complexity Analysis

3.2.1 Time Complexity

The construction of the first simplex can be formulated as a sequence of least squares (LS) problems ranging
in size from 2×d to d×d. Using DGELS from LAPACK, each LS problem can be solved in O(d3) time. At
all d −1 sizes, one must solve up to n LS problems, taking the point that produces the minimum residual as
the next vertex. Therefore, the total computation time for the first simplex will be O(nd4).

To complete a simplex (one iteration of the walk) requires at most n linear solves, performed with DGESV
from LAPACK in O(nd3) total time. In each iteration, a flip toward q is performed by dropping a vertex
in s to get an open facet σ , then completing σ with a point on the opposite halfspace (as defined by the
hyperplane containing σ ). In the expected case, for uniformly distributed points, the simplex containing q is
located in O(n1/d) iterations (Bowyer 1981, Mücke, Saias, and Zhu 1999). Therefore, the worst case time
complexity for performing the “walk” from the initial simplex to the simplex containing q is expected to be
O(n1+ 1

d d3).

From the previous analysis, using the proposed algorithm to interpolate at m points from a set of n points
in Rd will take O(mn1+ 1

d d3 +mnd4) total time. This is a significant improvement over the non polynomial
worst case for computing the complete triangulation.

3.2.2 Space Complexity

Recall from Section 3.1 that the size of the Delaunay triangulation grows exponentially with the dimension.
Therefore, space complexity is equally as concerning as time complexity since, for large d, one cannot store
the exponentially sized triangulation in memory. Another advantage of the proposed algorithm is that any
computed simplex that does not contain any interpolation point can be discarded immediately.
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Therefore, the required space for computing the Delaunay interpolant is reduced to:

• O(nd) space for the n input points in Rd ;
• O(md) space for storing the m interpolation points in Rd , the m containing simplices of size d + 1

each, and the m convex coordinate vectors of size d +1 each;
• O(d2) space for storing the d ×d matrices involved in performing linear solves;
• Other temporary storage arrays that require O(d) space.

This makes the total space complexity O(nd +md +d2). Since no triangulation can exist unless n > d, the
space complexity can be further reduced to O(nd+md), which is approximately the same size as the input.

3.3 Optimizations

There are two optimizations that are easily implemented to improve the performance of the proposed al-
gorithm. First, one could identify the point p ∈ P that is a nearest neighbor to q with respect to Euclidean
distance in O(n) time and build the first simplex off of p instead of an arbitrarily chosen point. For interpo-
lating at a single point, this typically leads to location of the simplex containing q in O(d logd) iterations of
the walk. Therefore, the expected time complexity is further reduced to Θ(mnd4 logd).

Furthermore, when interpolating many points, it is often the case that some simplex or simplices in the
iterative process contain interpolation points that have not yet been resolved. With no increase in total time
complexity, it is possible to check if the current simplex s contains any of the unresolved interpolation
points. If the points being interpolated are tightly clustered, it is typical for them to all be contained in a
small number of Delaunay simplices, significantly reducing total computation time.

3.4 Extrapolation

Up until this point, the proposed algorithm has only covered interpolation cases (when q is in CH(P)).
Often, however, it is reasonable to make a prediction about some extrapolation points Z that are slightly
outside CH(P). In these cases, it is most reasonable to project each z ∈ Z onto CH(P) and interpolate at
each projection ẑ, provided the residual r = ∥z− ẑ∥2 is small. The projection of z onto CH(P) can be easily
reformulated as an inequality constrained least squares problem, whose efficient solution is described in
Hanson and Haskell (1982).

4 RUNTIME ANALYSIS

A serial implementation of the proposed algorithm has been coded in ISO Fortran 2003 with extra machinery
added for numerical stability and degenerate case handling. This code was tested for correctness against
Qhull on both real world and pseudo-random data sets in up to four dimensions, with a mix of degenerate
and general position input points. Qhull is an industry standard used for computing high-dimensional
Delaunay triangulations in Matlab, SciPy, and R. An analysis of the Qhull algorithm is in Barber,
Dobkin, and Huhdanpaa (1996). After confirming correctness with lower dimensional data, run times were
gathered for pseudo-randomly generated point sets in up to 64 dimensions.

The following run times were gathered on an Intel i7-3770 CPU @3.40 GHz running CentOS release
7.3.1611. All run times were averaged over a sample size of 20 runs, each performed on a unique pseudo-
randomly generated input data set (generated with the Fortran intrinsic random number generator). Times
were recorded with the Fortran intrinsic CPU_TIME function, which is accurate up to microsecond reso-
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lution. Table 1 details average run times for interpolating at uniformly spaced interpolation points using a
five-dimensional input data set ranging in size from n = 2000 points to n = 32,000 points. Table 2 details
average run times for interpolating at interpolation points that were clustered within a hypercube with 10%
of the original point-set’s diameter using a five-dimensional input data set ranging in size from n = 2000
points to n = 32,000 points. Table 3 details average run times for interpolating at a single point in d = 2 up
to d = 64 dimensions over input data sets ranging in size from n = 2,000 points up to n = 32,000 points.
For reference, the data in Tables 1 and 2 could be compared to the computation times for the complete
five-dimensional Delaunay triangulation presented in Boissonnat, Devillers, and Hornus (2009).

Table 1: Average runtime in seconds for interpolating at uniformly spaced interpolation points for 5D
pseudo-randomly generated input points.

n = 2000 n = 8000 n = 16,000 n = 32,000
32 interp. pts 0.3 s 2.7 s 9.6 s 35.7 s

1024 interp. pts 2.5 s 11.6 s 28.9 s 79.1 s

Table 2: Average runtime in seconds for interpolating at clustered interpolation points for 5D pseudo-
randomly generated input points.

n = 2000 n = 8000 n = 16,000 n = 32,000
32 interp. pts 0.2 s 2.2 s 8.4 s 33.0 s

1024 interp. pts 0.2 s 2.5 s 9.2 s 35.2 s

Table 3: Average runtime in seconds for interpolating at a single point in up to 64 dimensional space for
pseudo-randomly generated input points.

n = 2000 n = 8000 n = 16,000 n = 32,000
d = 2 0.1 s 1.7 s 6.8 s 27.0 s
d = 8 0.2 s 2.5 s 9.6 s 37.9 s
d = 32 1.4 s 9.5 s 29.7 s 101.1 s
d = 64 13.2 s 60.1 s 138.6 s 349.1 s

A keen reader may recall from Section 3.3 that with optimizations, linear scaling with respect to n (the input
point size) is expected. However, in Table 3, a quadratic relationship is observed below 64 dimensions. This
is actually an artifact of the implementation, which includes extra code to promote elegant error handling and
numerical stability. Among other functions, the added code checks the diameter and closest-pair distance of
the data-set in O(n2) time and must perform at least one check for rank deficiency using the singular-value
decomposition of a d ×d matrix. If the input is assumed to consist of legal values with all points in general
position, then these checks can be dropped, significantly improving the run time.

5 PREDICTIVE ACCURACY

There are many theoretical advantages to interpolating using the Delaunay triangulation. To demonstrate its
predictive power, in this section, the code described in Section 4 is applied to an HPC system performance
problem.

5.1 Problem Summary

For this problem, the performance measure chosen is throughput variance, which is a quantifier of perfor-
mance variability. Performance variability refers to the inherent “jitter” observed in performance values
between multiple independent runs of an identical application. This variability can be of concern, particu-
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larly in large scale systems such as HPC and Cloud systems (Chandran et al. 2014, Lofstead et al. 2010,
Schad, Dittrich, and Quiané-Ruiz 2010). Specifically for this work, throughput variability is considered with
respect to various instances of the IOzone benchmark being run over a cluster of identical machines with
identical system and application level parameters. Unless otherwise stated, all system and application level
parameters are assumed to be fixed at some reasonable value.

5.2 Data Collection

Data for these experiments has been gathered at Virginia Tech on a homogeneous cluster of shared-memory
nodes running Ubuntu 14.04 LTS on a dedicated 2TB HDD. Each node is a 2 socket, 4 core hyperthreaded
Intel Xeon E5-2623 v3 (Haswell) processor with 32 GB DDR4. Data has been gathered by running the
IOzone benchmark. The IOzone benchmark measures read/write throughputs by reading and writing files
of configurable size, broken up into configurable record sizes, utilizing a configurable number of threads.
For more information on IOzone, see www.iozone.org. Up to 13 different variations of read and write
tasks can be tested, but in this paper only the fread task is considered. To generate each data point, the
IOzone benchmark has been run independently 40 times with identical settings, and the variance has been
computed for the maximum throughput of the fread task using

σ
2 =

∑
40
i=1(ti −µ)2

39
(2)

where ti represents the throughput for each of the 40 runs, and µ is the mean observed throughput over all
40 runs. The variance is modeled as a function of four system and application parameters, chosen because
of their relevance to the IOzone benchmark. These parameters are thread count, CPU frequency, file size,
and record size. Note that the parameters thread count, file size, and record size are specifiable as IOzone
inputs, while CPU frequency must be manually set for each run using system tools. To avoid biasing the
data, the CPU cache has been purged between each run of an IOzone test.

For each parameter, several values have been chosen spanning a range of reasonable values, and the observed
variance has been calculated for each combination of settings using (2). For the data presented, the values
chosen are in Table 4. Note that some combinations of parameters are not viable (specifically, the record size
cannot be greater than the file size). These combinations have been omitted when collecting data. Observe
that there are 6 valid combinations of file and record size, 9 thread counts, and 16 distinct CPU frequencies.
This results in 6×9×16 = 864 total data points.

Table 4: Values for adjusted parameters. Note, the frequency 3.001 GHz results from overclocking.

values
file size (KB) 64, 256, 1024

record size (KB) 32, 128, 512
thread count 1, 2, 4, 8, 16, 32, 64, 128, 256

frequency (GHz) 1.2, 1.4, 1.5, 1.6, 1.8, 1.9, 2.0, 2.1, 2.3, 2.4, 2.5, 2.7, 2.8, 2.9, 3.0, 3.001

The relationship between variance and each individual problem dimension has been observed to exhibit
highly nonlinear behavior, making a simple linear fit an extremely poor solution to this problem. The
Delaunay interpolant is better able to accommodate this nonlinearity since the Delaunay interpolant is only
piecewise linear.

5.3 Model Evaluation

From the collected data, the following points in (3) have been selected for testing the Delaunay prediction.
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q1 = (fsize = 256, rsize = 128, threads = 2, freq = 1.9)
q2 = (fsize = 256, rsize = 128, threads = 2, freq = 2.9)
q3 = (fsize = 1024, rsize = 32, threads = 4, freq = 2.9)

(3)

Note that because of the restriction on valid combinations of file and record size, it is not possible to select
points strictly inside the convex hull. Consequently, all the points in (3) are on the boundary of the convex
hull. Various percentages of the remaining points are used by the Delaunay interpolant to predict the value of
the throughput variance f (qi) for all qi in (3). For each of these “training percentages,” up to 200 Delaunay
interpolations are calculated using different pseudo-random samplings from the complete set of data points,
with a bias toward uniformly distributed samplings. These samplings are constrained in that the prediction of
f (qi) cannot be based off a sampling that includes qi, and qi cannot be outside the convex hull of the selected
points. Also, repeated use of the same sampling in a single batch of 200 samplings has been forbidden. Note
that because of the constraints, in some cases, less than 200 samplings could be gathered.

Figures 3, 4, and 5 show box plots of the relative errors observed when using the Delaunay interpolant to pre-
dict q1, q2, and q3 at each training percentage. The relative error was computed using:

∣∣ f̂ (qi)− f (qi)
∣∣/ f (qi)

for i = 1, 2, 3.
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Figure 3: Box plot of the relative error for up to 200 variance predictions at q1 (3) using the Delaunay in-
terpolant with various percentages of the total available data. Note: Relative errors greater than 10 (1000%)
have been truncated.

Using 90% of the 863 remaining data points (after excluding the point qi that is being interpolated at) the
Delaunay interpolant is seen to be fairly accurate, taking into consideration the difficulty of the problem.
The Delaunay interpolant remains relatively accurate using as little as 50% of the remaining data. Note that
for the large training percentages, the boxes in Figures 3, 4, and 5 are very narrow. This is because large
samplings have a relatively low probability for dropping a vertex from the Delaunay simplex containing
qi, and unless some vertex of the containing Delaunay simplex is dropped, the interpolated value will not
change for the Delaunay interpolant.

6 CONCLUSION AND FUTURE WORK

In this paper, a new Delaunay triangulation algorithm is proposed for interpolating in point clouds in arbi-
trary dimension d. This is achieved by computing a relatively small number of simplices from the complete
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Figure 4: Box plot of the relative error for up to 200 variance predictions at q2 (3) using the Delaunay in-
terpolant with various percentages of the total available data. Note: Relative errors greater than 10 (1000%)
have been truncated.
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Figure 5: Box plot of the relative error for up to 200 variance predictions at q3 (3) using the Delaunay
interpolant with various percentages of the total available data.

Delaunay triangulation in polynomial time. The proposed algorithm scales linearly with respect to the size
of the input in the expected case, regardless of the dimension. The described algorithm was demonstrated on
a system performance problem, where it was used to make accurate predictions about throughput variance.
It should be noted that the Delaunay triangulation is not limited to interpolation and is widely used in mesh
generation, principle component analysis, and topological data analysis. Its geometric dual, the Voronoi
diagram, can also be used to make rapid nearest neighbor queries and is the basis for another interpolation
technique, natural neighbor interpolation. In future work, the methods used to construct and locate a single
Delaunay simplex could potentially be extended for other Delaunay triangulation applications. In particular,
knowledge of a Voronoi cell can be achieved by computing the star of simplices incident at a given vertex.
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