
A Polynomial Time Algorithm for Multivariate Interpolation in
Arbitrary Dimension via the Delaunay Triangulation
Tyler H. Chang

Dept. of Computer Science

Virginia Polytechnic Institute and

State University

Blacksburg, VA

thchang@vt.edu

Layne T. Watson

Depts. of Computer Science,

Mathematics, and Aerospace & Ocean

Engineering

Virginia Polytechnic Institute and

State University

Thomas C. H. Lux

Bo Li

Dept. of Computer Science

Virginia Polytechnic Institute and

State University

Li Xu

Dept. of Statistics

Virginia Polytechnic Institute and

State University

Ali R. Butt

Kirk W. Cameron

Dept. of Computer Science

Virginia Polytechnic Institute and

State University

Yili Hong

Dept. of Statistics

Virginia Polytechnic Institute and

State University

ABSTRACT
The Delaunay triangulation is a fundamental construct from compu-

tational geometry, which finds wide use as a model for multivariate

piecewise linear interpolation in fields such as geographic infor-

mation systems, civil engineering, physics, and computer graphics.

Though efficient solutions exist for computation of two- and three-

dimensional Delaunay triangulations, the computational complex-

ity for constructing the complete Delaunay triangulation grows

exponentially in higher dimensions. Therefore, usage of the Delau-

nay triangulation as a model for interpolation in high-dimensional

domains remains computationally infeasible by standard methods.

In this paper, a polynomial time algorithm is presented for inter-

polating at a finite set of points in arbitrary dimension via the

Delaunay triangulation. This is achieved by computing a small

subset of the simplices in the complete triangulation, such that all

interpolation points lie in the support of the subset. An empiri-

cal study on the runtime of the proposed algorithm is presented,

demonstrating its scalability to high-dimensional spaces.

KEYWORDS
Delaunay triangulation,multivariate interpolation, high-dimensional

triangulation

ACM Reference Format:
Tyler H. Chang, Layne T. Watson, Thomas C. H. Lux, Bo Li, Li Xu, Ali R.

Butt, Kirk W. Cameron, and Yili Hong. 2018. A Polynomial Time Algorithm

for Multivariate Interpolation in Arbitrary Dimension via the Delaunay

Triangulation. In ACM SE ’18: ACM SE ’18: Southeast Conference, March
29–31, 2018, Richmond, KY, USA. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3190645.3190680

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACM SE ’18, March 29–31, 2018, Richmond, KY, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5696-1/18/03. . . $15.00

https://doi.org/10.1145/3190645.3190680

1 INTRODUCTION
With the rise in big data analytics, accurate techniques for perform-

ing multivariate approximations that scale to high-dimensional do-

mains have become increasingly valuable. Well-known solutions to

the multivariate approximation problem include nearest-neighbor

interpolation, least squares approximation, spline based approxi-

mation functions, and a host of machine learning regression tech-

niques. Delaunay triangulations are fundamental to computational

geometry and are commonly used to perform piecewise linear multi-

variate interpolation in geographic information systems (GIS), civil

engineering, physics, and computer graphics applications [5, 7, 15].

Delaunay triangulations have also been proposed as an effective

means for learning nonlinear functions in the context of machine

learning [13], but never achieved mass popularity likely due to their

impractical computational complexity for high-dimensional data.

Given an underlying function f : Rd → Rm , a finite set of points

P in Rd , and the response values f (p) for all p ∈ P , an interpolant
ˆf

is an approximation of f that satisfies
ˆf (p) = f (p) for all p ∈ P . In

the case where d > 1,
ˆf is a multivariate interpolant. One method

for constructing a multivariate interpolant is to define a mesh of

simplices that are disjoint except on their boundaries, have vertices

in P , and whose union is the convex hull of P , denotedCH (P). Such
a mesh is a d-dimensional triangulation of P .

Let T (P) be a d-dimensional triangulation of P . To define an

interpolant in terms of T (P), let q ∈ CH (P) be an interpolation

point, and let S be a simplex inT (P) with vertices s1, . . ., sd+1 such
that q ∈ S . Then there exist unique convex weights w1, . . ., wd+1
such that q =

∑d+1
i=1 wisi ,

∑d+1
i=1 wi = 1, and wi ≥ 0 for i = 1, . . .,

d + 1. Then the interpolant
ˆfT is given by

ˆfT (q) = f (s1)w1 + f (s2)w2 + . . . + f (sd+1)wd+1. (1)

Note that
ˆfT is well-defined, since q is in multiple simplices if and

only if q lies on a shared face. In such a case, q can be expressed

as a convex combination of only the vertices defining this mutual

face. Therefore, the weights associated with all nonmutual vertices

must be zero.

The Delaunay triangulation is a specific triangulation that en-

joys several properties considered optimal for interpolation [14].

https://doi.org/10.1145/3190645.3190680
https://doi.org/10.1145/3190645.3190680
https://doi.org/10.1145/3190645.3190680

ACM SE ’18, March 29–31, 2018, Richmond, KY, USA T. H. Chang et al.

For computing two- and three-dimensional Delaunay triangula-

tions, several O (n logn) time algorithms exist [16]. However, for

higher-dimensional Delaunay triangulations, the computational

complexity grows exponentially [11]. This paper considers the case

where a user seeks to interpolate at a finite set of points Q using

(1) with the Delaunay triangulation of P . A new algorithm is pro-

posed for doing so that runs in polynomial time with respect to

the dimension, number of input points, and number of points to be

interpolated.

The paper is organized as follows. Section 2 provides relevant

definitions and a short summary of related work and challenges.

Section 3 contains a detailed description and analysis of the opera-

tions performed in the proposed algorithm. Section 4 introduces

the proposed algorithm along with an analysis of its complexity.

Section 5 raises several issues pertaining to numerical stability and

describes how they are addressed in the algorithm’s implementa-

tion. Section 6 briefly describes a Fortran implementation of the

algorithm and presents an empirical analysis of its run time. Section

7 concludes this paper and outlines future work.

2 BACKGROUND
2.1 Definitions
For completeness, first consider the following geometric definitions.

A (d − 1)-sphere in Rd with center v and radius r ≥ 0 is given by

C (v, r) = {x | ∥x − v ∥2 = r }, and the (geometric) interior of C is

the open ball B (v, r) = {x | ∥x −v ∥2 < r }. Note that d + 1 affinely

independent points in Rd define a unique (d −1)-sphere that passes
through these points.

The Delaunay triangulation is defined as the geometric dual of

the Voronoi diagram, also known as the Dirichlet tessellation [5, 7].

To obtain a Delaunay triangulation from the Voronoi diagram of a

set of n points P ⊂ Rd , take the set of d-simplices defined by the

d+1 closest points to each Voronoi vertex. By definition of a Voronoi
vertex, there will always be at least d + 1 points equidistant from
each vertex. If there are more than d+1 points equidistant from one

or more Voronoi vertices, then the division of those points into two

or more space-filling d-simplices is arbitrary, and any Delaunay

triangulation of P is not unique.

Note that each Voronoi vertex v is the center of a (d − 1)-sphere
C (v, r) through the d + 1 or more points defining v , such that

B (v, r) ∩ P = ∅. This is often referred to as the empty circumsphere
property. Formalizing this property, the following alternative defini-

tion of a Delaunay triangulation is generally preferred. See Figure

1 for a visual.

Definition 2.1. A Delaunay triangulation DT (P) of a finite set

of points P ⊂ Rd is any triangulation of P such that for each d-
simplex S ∈ DT (P), the (d − 1)-sphere C (v, r) circumscribing S
satisfies B (v, r) ∩ P = ∅.

Note that if all p ∈ P are contained in some lower-dimensional

linear manifold (or equivalently, if CH (P) has zero volume), then

all Voronoi edges extend without bound, and there are no Voronoi

vertices. Therefore, DT (P) (and in general, any full-dimensional

triangulation of P) does not exist. It should be noted that for any set

of n points in Rd , if n < d + 1 then all of the points lie in a (n − 1)-
dimensional linear manifold trivially and no triangulation can exist.

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

Figure 1: A triangulation in R2 (top) and the Delaunay trian-
gulation (bottom).

In the context of interpolation, the case where n ≥ d + 1 and still no
triangulation exists can be interpreted as an over-parameterization

of the underlying function f .
Except in degenerate cases, there will be exactly d + 1 points

on the boundary of every (d − 1)-sphere, and DT (P) is unique.
Generally, if n ≥ d + 1, it can be assumed that DT (P) exists and is

unique. Since the existence and uniqueness of DT (P) is generally
presumed, it is customary to reference theDelaunay triangulation of
a set of points. This can be formalized with the following definition.

Definition 2.2. A set of points P in Rd is said to be in general
position if P does not lie in some (d−1)-dimensional linear manifold,

and if no d + 2 points in P lie on the same (d − 1)-sphere.

Recall that every Delaunay simplex is circumscribed by a (d − 1)-
sphereC (v, r) satisfying B (v, r) ∩P = ∅. Additionally, consider any
set s = {s1, . . ., sd+1} ofd+1 points in P that defines a (d−1)-sphere
C (v, r) with B (v, r) ∩ P = ∅. Then no points in P \ s are closer to
v than the points in s . Therefore v must be a Voronoi vertex, and

s is the set of vertices of a d-simplex in DT (P). This leads to the

following useful equivalence.

Polynomial Time Delaunay Interpolation ACM SE ’18, March 29–31, 2018, Richmond, KY, USA

Observation 2.3. A set of d + 1 points s ⊂ P is the set of vertices

of a d-simplex S ∈ DT (P) if and only if s defines a (d − 1)-sphere
C (v, r) with B (v, r) ∩ P = ∅.

2.2 Optimality of the Delaunay Interpolant
In this paper, the Delaunay interpolant will refer to the function

ˆfDT , as defined in (1), where DT is a Delaunay triangulation. The

Delaunay triangulation has several favourable properties that make

ˆfDT optimal with respect to all piecewise linear interpolants of

the form
ˆfT . The following results, originally shown by Rajan [14],

demonstrate some of these favourable properties, many of which

are analogous to properties associated with “quality” finite element

meshes [5].

• The Delaunay triangulation uniformly minimizes the radius

of the min-containment sphere over all simplices, with re-

spect to all other triangulations.

• Consider any point x ∈ P and let BTx = BT
1
∪ BT

2
∪ . . . ∪ BTk

where {BTi } is the set of circumballs defined by all simplices

in T containing x as a vertex. Then for all T (P) , DT (P)

BDTx ∩CH (P) ⊂ BTx ∩CH (P).

• Define an edge of a simplex to be a 1-face of that simplex,

and let the length of an edge denote the Euclidean distance

between the two vertices defining the 1-face. Then the De-

launay triangulation minimizes the weighted sum of squares

of all edge lengths where the weight is given by the sum of

the volumes for all simplices incident to that edge.

• Define a simplex S to be “self-centered” if its circumsphere

C (v, r) satisfies v ∈ S . Then if a triangulation T (P) exists
such that all S ∈ T (P) are self-centered, then T (P) = DT (P).

2.3 Related Works and Limitations
Efficient solutions exist for computing Delaunay triangulations in

two- and three-dimensions, running in O (n logn) time [16]. How-

ever, in Rd , the worst case size of the Delaunay triangulation is

known to be O (n ⌈d/2⌉) [11]. Even in the common case, the De-

launay triangulation still tends to grow exponentially with the

dimension. This phenomenon is often referred to as the curse of

dimensionality.

In spite of this, many attempts have been made to compute

Delaunay triangulations in arbitrary dimension d . The earliest al-
gorithm proposed for computing arbitrary-dimensional Delaunay

triangulations was proposed independently by both Bowyer [4]

and Watson [17] in the same issue of The Computer Journal. In the

Bowyer-Watson algorithm, points are inserted incrementally; and

with each insertion, the triangulation is refined to be Delaunay.

Quickhull [1] is one of the most time efficient methods for com-

puting high-dimensional Delaunay triangulations. It also boasts a

robust and numerically stable implementation, which is currently

used as the intrinsic for high-dimensional Delaunay triangulation

computation in Matlab, SciPy, and R. Quickhull takes advantage of
the Delaunay triangulation’s relationship with convex hulls, lifting

P onto the bottom of a bowl in Rd+1, computing the convex hull

of the lifted set, then projecting the facets of the convex hull back

down into the original space to get the Delaunay triangulation in

Rd .

The Delaunay Graph approach [2] is loosely based off the algo-

rithm described in [3], which is at its core, a randomized variation

of the Bowyer-Watson algorithm. However, to avoid the explosion

in storage overhead, this algorithm (at the expense of computation

time) forces the Delaunay triangulation into a graph format that

can be stored in O (n2) space. This algorithm is currently used in

the Computational Geometry Algorithms Library (CGAL).

The final algorithm of interest is the Delaunay Wall (DeWall)

algorithm [6]. The DeWall algorithm is a divide-and-conquer based
approach that offers an interesting strategy for guided construction

of a Delaunay simplex “wall.”

It should be noted that none of the above mentioned algorithms

are believed to scale past eight dimensions for large data sets.

3 NECESSARY OPERATIONS
The goal of this work is a Delaunay interpolation algorithm that

scales polynomially to high-dimensional spaces. Recall from Sec-

tion 2.3 that the worst case size of the Delaunay triangulation is

O (n ⌈d/2⌉). Therefore, any algorithm that requires the computation

of the complete Delaunay triangulation cannot scale. To circumvent

this limitation, the following observation is necessary.

Observation 3.1. Given a finite set of points P inRd , the Delaunay

interpolant
ˆfDT (q) for some q ∈ CH (P) can be exactly computed

given the vertices s = {s1, . . ., sd+1} of any simplex S ∈ DT (P) such
that q ∈ S .

This reduces the problem of computing DT (P) to that of comput-

ing a specific simplex in DT (P). Given an interpolation point q and

a point set P , the proposed algorithm computes a polynomial sized

subset of DT (P) such that q lies in the support of that subset. Given

the vertices of a simplex in DT (P) containing q, the computation

of
ˆfDT (q) via (1) is trivial.
In this section, the machinery for computing the previously de-

scribed containing Delaunay simplex is developed. The correctness

of the proposed algorithm will follow from the correctness of these

operations. There are three basic operations that need to be defined

and proven. They are the construction of an initial Delaunay sim-

plex, the completion of an open Delaunay facet, and the visibility

walk. The construction of a Delaunay simplex and the completion

of an open facet are also described as the basis for both incremental
construction and divide-and-conquer paradigms in [6]. The visibility

walk finds wide use in several other Delaunay triangulation and

point location algorithms [2–4, 12, 17].

3.1 Growing a Delaunay Simplex
To begin, the following definition of a Delaunay face is useful.

Definition 3.2. Let P be a set of points in Rd . Let F be a k-face
with vertices in P where 0 ≤ k ≤ d . Then F is a Delaunay face if the
smallest (radius) (d − 1)-sphere C (v, r) circumscribing F satisfies

B (v, r) ∩ P = ∅.

Note that if k = d , then by Observation 2.3, F is a Delaunay

simplex. The following lemma shows how to grow a complete

Delaunay simplex from an arbitrary Delaunay face.

Lemma 3.3. Let P be a set of points in Rd in general position, and
let F be a Delaunay k-face with vertices ϕ ⊂ P where k < d . Let

ACM SE ’18, March 29–31, 2018, Richmond, KY, USA T. H. Chang et al.

ϕ∗ = ϕ ∪ {p∗} where p∗ ∈ P \ ϕ minimizes the radius of the smallest
(d −1)-sphereCϕ∪{p } through the points in ϕ∪ {p}, over all p ∈ P \ϕ.
Then F ∗, the (k + 1)-face with vertices ϕ∗, is also a Delaunay face.

Proof. The set of centers of (d − 1)-spheres Cϕ (v, r) through ϕ
is a (d − k)-dimensional linear manifoldMϕ (the solution set of k
linear equations), and similarly for ϕ∗, the (d − k − 1)-dimensional

linear manifoldMϕ∗ . The center v
∗
of the smallest (d − 1)-sphere

Cϕ∗ (v
∗, r∗) through ϕ∗ is the projection of p∗ ontoMϕ∗ (the closest

point inMϕ∗ to p
∗
). If there were a p ∈ P \ ϕ with p ∈ B (v∗, r∗),

then ∥p −v∗∥2 < r∗. Then by continuity B (v∗, r∗) ∩Mϕ contains a

point z equidistant from all the points in ϕ and p, with ∥z−p∥2 < r∗,
and hence there exists a (d−1)-sphere centered at z through ϕ∪{p}
of radius less than r∗, which contradicts the definition of p∗ and
r∗. Therefore F ∗, the simplex with vertices ϕ∗, must be a Delaunay

face. □

The smallest (d − 1)-sphere containing a single point is simply

the point itself, whose open ball is the empty set. Therefore, any

point in P is a Delaunay 0-face trivially. So, starting with an arbi-

trary point in P and applying the following algorithm d times, the

vertices of a full Delaunay simplex S are found. The correctness of

this approach follows immediately from Lemma 3.3.

Algorithm1, computes the verticesϕ∗ ⊃ ϕ of a Delaunay (k+1)-
face from the verticesϕ of a Delaunayk-face.

Let P be a set of n points p1, . . ., pn in Rd in general position.

Let ϕ ⊂ P be the vertices of a Delaunay k-face where k < d .
Let ri denote the minimum radius of a (d − 1)-sphere containing
ϕ and the point pi .

rmin := ∞;

for i := 1, . . ., n do
if ri < rmin and pi < ϕ then
p̂ := pi ;
rmin := ri ;

end if
end for
return ϕ∗ := ϕ ∪ {p̂};

3.2 Completing an Open Facet
Before presenting the algorithm for completing an open facet, the

following observation is helpful. A visual representation of Obser-

vation 3.4 is presented in Figure 2.

Observation 3.4. Let DT (P) be the Delaunay triangulation of a

set of points P in Rd . Given a facet F of some simplex S ∈ DT (P),
let p1, . . ., pn be a sequence of points in P and in a halfspaceH with

hyperplane boundary containing F . Define the circumspheres C1,

. . ., Cn with corresponding open balls B1, . . ., Bn such that each

Ck contains σ and pk . Assume the sequence p1, . . ., pn satisfies

pk ∈ Bk+1 for all 1 ≤ k < n. Then B1∩H ⊂ B2∩H ⊂ . . . ⊂ Bn ∩H .

The proof of this observation has been omitted but follows from

a simple continuity argument. Given Observation 3.4, the following

algorithm is proposed for completing an open facet of a Delaunay

simplex.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

2

2.5

3
p3

p2p1

F

H

p3

p2p1

F

H

p3

p2p1

F

H

Figure 2: A 2D visualization of Observation 3.4. The solid
line segment is a facet F ,H is the halfspace above the dashed
line, and {p1,p2,p3} is a sequence satisfying p1 ∈ B2 and
p2 ∈ B3.

Algorithm 2, computes the set of vertices s of a Delaunay sim-

plex in the halfspace H from the vertices σ of a Delaunay facet F
lying in the boundary hyperplane ofH .

Let P be a set of n points p1, . . ., pn in Rd in general position.

Let σ be the vertices of a facet F of a Delaunay simplex.

Let H be a halfspace with hyperplane boundary containing F .
Let PH = (P \ σ) ∩ H .

Let Bi denote the open ball defined by the (d − 1)-sphere con-
taining σ and pi .

B := H ;

p̂ := p0; Note, p0 is a dummy vertex.

for i := 1, . . ., n do
if pi ∈ PH and pi ∈ B then
p̂ := pi ;
B := Bi ;

end if
end for
if p̂ = p0 then
σ must define a facet of CH (P)
return ∅;

else
return s := σ ∪ {p̂};

end if

Claim 3.5. Let P be in general position. Then Algorithm 2 correctly
computes the vertices of a Delaunay simplex.

Proof. First, note that if ∅ is returned, then the set PH = (P \
ϕ) ∩ H was empty. Then the algorithm has correctly determined

that σ defines a facet of CH (P), and no simplex can exist in H .

Now suppose a set of vertices s was returned. Since P is in general

position, for every pair of points p1,p2 ∈ PH , it must be that either

p1 ∈ B2 or p2 ∈ B1. Therefore, by Observation 3.4, the added vertex

p̂ is in the open ball defined by the circumsphere of every other

Polynomial Time Delaunay Interpolation ACM SE ’18, March 29–31, 2018, Richmond, KY, USA

point in PH . So, p̂ is the only point in PH that could define the

vertices for a Delaunay simplex in conjunction with the set σ . It
has been given that σ is the set of vertices of a Delaunay facet and

the Delaunay triangulation exists since the points are in general

position. Therefore, s = ϕ ∪ {p̂} must be the vertices of a Delaunay

simplex. □

3.3 Visibility Walk
The final ingredient in the proposed algorithm will be a visibility

walk. Begin with the following definition.

Definition 3.6. Let S,U be simplices in DT (P). Then S <x U , (x
is visible to S with respect to U), if every ray ℓ drawn from x that

has a nonempty intersection with both S andU intersects S “before”

U , i.e., for all y ∈ S ∩ ℓ and for all z ∈ U ∩ ℓ, y is between x and z
on ℓ.

A visibility walk is defined by a sequence of simplices S1, . . .,
Sn that satisfy Sn <x Sn−1 <x . . . <x S1. Using Algorithm 2,

a visibility walk could be performed from an arbitrary simplex

to the simplex containing an interpolation point q ∈ CH (P), by
completing a shared facet between neighboring Si and Si+1 such
that Si+1 <q Si . From the definition, it is clear that if Fi is the
shared facet between Si and Si+1 and Si+1 is on the same side of

the hyperplane containing Fi as q, then Si+1 <q Si . Therefore, a
“next step” in the simplex walk always exists unless Si contains q.
However, it is not clear whether a given simplex walk will ever

terminate, (i.e., whether it will ever arrive at a Sn containing q).
Clearly, if a transitivity property can be established, then the walk

terminates since there are finitely many simplices in any given

triangulation. The following definition formalizes this.

Definition 3.7. A triangulation T (P) is said to be acyclic with

respect to some viewpoint x if for all S,U ,V ∈ T (P), S <x U and

U <x V impliesU <x V .

In general, an arbitrary triangulation T (P) is not acyclic, and a

visibility walk to locate some S ∈ T (P) containing q ∈ CH (P) may

go into an infinite loop and fail to terminate. However, it is known

that Delaunay triangulations are acyclic.

Theorem 3.8. Delaunay triangulations are acyclic with respect to
a fixed viewpoint x .

This theorem was originally shown by Edelsbrunner, and a de-

tailed proof is in his original paper [8]. However, for the sake of

completeness, consider the following abbreviated interpretation of

Edelsbrunner’s proof.

Proof. If there exists a function Φx : DT (P) → R such that

S <x U ⇒ Φx (S) < Φx (U), then the proof follows trivially since it

cannot be that

Φx (S1) < Φx (S2) < . . . < Φx (Sk) < Φx (S1).

Define Φx (S) = ∥x−vS ∥
2

2
−r2S , whereC (vS , rS) is the (d−1)-sphere

circumscribing S . Assume S,U ∈ DT (P) such that S <x U . Then

any ray originating at x passes through S before U . Since S and

U have mutually empty circumballs (with respect to each others’

vertices), it follows that Φx (S) < Φx (U). □

4 DELAUNAY INTERPOLATION ALGORITHM
AND ANALYSIS

4.1 Algorithm Description
Using the three operations outlined in Section 3, it is possible to

grow an initial Delaunay simplex then “walk” toward the simplex

containing an interpolation point q ∈ CH (P) by completing open

facets such that the sequence S1, . . ., Sk of constructed Delaunay

simplices satisfies Sk <q Sk−1 <q . . . <q S1.

Note, that for every S ∈ DT (P) and q ∈ Rd , q is a unique affine

combination of the vertices of S . Furthermore, if q is in S , then
this affine combination will also be convex by the definition of a

simplex. Therefore, one can terminate based on the nonnegativity

of the affine weights for q with respect to the vertices of the current

simplex S . Furthermore, if q is not in S , then at least one of the

weights will be negative, corresponding to a point that should be

dropped to advance “closer” to q with respect to <q . Conveniently,

upon termination, the convex weights for q are the exact weights

needed to linearly interpolate at q within S , as defined in (1). Pseudo
code for the proposed algorithm is provided below.

Algorithm 3, computes the value of the Delaunay interpolant

ˆfDT (q) for q ∈ CH (P).

Let P be a set of n points in Rd in general position.

Let q ∈ CH (P) be a point to interpolate at.

Let fi = f (pi) be known for all pi ∈ P , and let f (s) denote the set
{ fi1 , fi2 , . . . , fid+1 } for a set s of d + 1 points {pi1 , pi2 , . . . , pid+1 }
in P .
Let MakeFirstSimplex(P) be a function that grows the set of

vertices of a Delaunay simplex from points in P as described in

Algorithm 1.

Let CompleteSimplex(σ , q, P) be a function that completes the

facet defined by the set of vertices σ with a point from P that is on

the same side of the hyperplane containing σ as q; as described
in Algorithm 2.

Let AffineWeights(q, s) be a function that returns the affine

weights that give q as a combination of the vertices s .
Let MinIndex(w) return the index of the most negative element

wi .

Let DropVertex(s , i) return the set s \ {si } where si is the ith
element of s .

s := MakeFirstSimplex(P);
w := AffineWeights(q, s);
whilewi < 0 for some 1 ≤ i ≤ d + 1 do
i := MinIndex(w);

σ := DropVertex(s , i);
s := CompleteSimplex(σ , q, P);
w := AffineWeights(q, s);

end while
return ˆfDT (q) := ⟨w, f (s)⟩ (inner product);

The correctness of Algorithm 3 follows from the correctness of

the operations in Sections 3.1 - 3.3. The simplices constructed will

always be Delaunay by Algorithms 1 and 2, and the while loop will

terminate in finite time by Theorem 3.8.

ACM SE ’18, March 29–31, 2018, Richmond, KY, USA T. H. Chang et al.

4.2 Time Complexity
The construction of the first simplex, as defined in Algorithm 1, can

be formulated as a sequence of least squares (LS) problems ranging

in size from 2 ×d to d ×d . Each LS problem can be solved in O (d3)
time. At all d − 1 sizes, one must solve up to n LS problems, taking

the point that produces the minimum residual as the next vertex.

Therefore, the total computation time for the first simplex will be

O (nd4).
To complete a simplex (in one iteration of the visibility walk)

requires at most n linear solves, performed in O (nd3) total time.

Therefore, the total time complexity of the visibility walk is given by

O (nd3k), where k is the number of iterations required to converge

on the interpolation point. Bowyer [4] claims that for uniformly

distributed input points P , the expected length of a walk starting

from the center of the Delaunay triangulation is O (n1/d). However,
no proof is provided so this remains speculative. Mücke, Saias, and

Zhu [12] prove that in up to three dimensions, a randomized variant

of the visibility walk converges in O (n
1

d+1) iterations, but the proof
does not generalize past three dimensions.

Assuming Bowyer’s claim holds, using the proposed algorithm

to interpolate at m points from a set of n points in Rd will take

O (mn1+
1

d d3 +mnd4) expected time. This is a significant improve-

ment over the exponential time required for computing the entire

Delaunay triangulation.

4.3 Space Complexity
Recall from Section 2.3 that the size of the Delaunay triangula-

tion grows exponentially with the dimension. Therefore, space

complexity is equally as concerning as time complexity since, for

large d , one cannot store the exponentially sized triangulation in

memory. Another advantage of the proposed algorithm is that any

computed simplex that does not contain any interpolation point

can be discarded immediately after one of its open facets has been

completed.

Therefore, the required space for computing the Delaunay inter-

polant is reduced to:

• O (nd) space for the n input points in Rd ;

• O (md) space for storing them interpolation points in Rd ,
the m containing simplices of size d + 1 each, and the m
convex coordinate vectors of size d + 1 each;
• O (d2) space for storing the d × d matrices involved in per-

forming linear solves;

• Other temporary storage arrays that require O (d) space.

This makes the total space complexity O (nd +md + d2). Since no
triangulation can exist unless n > d , the space complexity can be

further reduced to O (nd +md), which is approximately the same

size as the input.

4.4 Optimizations
There are several optimizations that are easily implemented to

improve the performance of the proposed algorithm. First, in a

slight modification to Algorithm 3, one could identify the point

p̂ ∈ P that is a nearest neighbor to q with respect to Euclidean

distance in O (n) time and build the first simplex off of p̂ instead of

an arbitrarily chosen point. As seen in Table 1, for interpolating

at a single point, this typically leads to location of the simplex

containing q in O (d logd) iterations of the visibility walk with very

little dependency on n.

Table 1: Average number (with a sample size of 20) of Delau-
nay simplices computed in a simplex walk from the simplex
built off the nearest neighbor to q for n pseudo-randomly
generated points in d dimensions.

n = 2K n = 8K n = 16K n = 32K

d = 2 3.05 2.90 3.25 3.10

d = 8 23.75 24.75 24.30 23.10

d = 32 95.25 125.60 131.85 150.10

d = 64 171.95 221.85 248.35 280.60

When interpolating many points, it is often the case that some

simplex or simplices in the walk contain interpolation points that

have not yet been resolved. With no increase in total time complex-

ity, it is possible to check if the current simplex contains any of the

unresolved interpolation points. If the points being interpolated

are tightly clustered, it is typical for them to all be contained in a

small number of Delaunay simplices, significantly reducing total

computation time.

Furthermore, as will be described in Section 5, when numerical

stability is considered, construction of the first simplex becomes

a dominant factor. Then it often becomes optimal to “daisy chain”

visibility walks, walking from each solution simplex to the next

without ever recomputing an initial simplex. Note that when this

approach is taken, the previous complexity analyses regarding the

length of the visibility walk no longer apply, and not much can

be said about the length of the walk. However, in practice, for a

moderate number of interpolation points the walk still tends to

locate all simplices in relatively few steps and significantly less time

than what would be required to compute the complete triangulation.

4.5 Extrapolation
Up until this point, the proposed algorithm has only covered inter-

polation cases (when q is in CH (P)). Often, however, it is reason-
able to make a prediction about some extrapolation points Z that

are slightly outside CH (P). In these cases, it is most reasonable to

project each z ∈ Z ontoCH (P) and interpolate at each projection ẑ,
provided the residual r = ∥z − ẑ∥2 is small. The projection of z onto
CH (P) can be easily reformulated as an inequality constrained least

squares problem, whose efficient solution is described in [10]. Note

that the time and space complexity for performing the projection

could be expensive compared to what is required for computing

the Delaunay interpolant.

5 ISSUES IN STABILITY
An important assumption that has been made up until this point is

that P is in general position. However, in real world applications,

it is possible that P could be some degenerate set. There are two

cases that lead to meaningful degeneracies.

• P could be contained in some lower-dimensional linear man-

ifold.

Polynomial Time Delaunay Interpolation ACM SE ’18, March 29–31, 2018, Richmond, KY, USA

• There could exist d + 2 or more points in P that lie on the

same (d − 1)-sphere.

A special case of the second listed degeneracy, is the case where

k + 1 points in P lie on some (k − 1)-dimensional linear manifold

and on some (k − 2)-sphere embedded in that manifold. This leads

to a situation where Algorithms 1 and 2 can fail by selecting points

that minimize the radius of the resulting (d − 1)-sphere but define
a degenerate k-face.

5.1 Dealing with Degeneracies
The situation where all points lie on a lower-dimensional linear

manifold will always result in a situation where no new point can

be “added” to the set of vertices during the construction of the

first Delaunay simplex without making some face degenerate. This

situation is easily detected via a check for rank deficiency and

need not be handled since users can apply dimension reduction

techniques to construct an equivalent non degenerate problem.

In the case where more than d + 1 points lie on some (d − 1)-
sphere, one would like to still obtain aDelaunay interpolant, though
it will no longer be unique. Exactly which Delaunay interpolant is

obtained is actually unimportant, since all Delaunay interpolants

are equally optimal. Since degeneracies occur with zero probability,

one solution to this problem could be to perturb each p ∈ P by

some small random amount such that the perturbed set ρ (P) is in
general position [9].

Alternatively, one could handle degeneracies by constantly check-

ing that each Delaunay k-face created is not embedded in some

(k−1)-dimensional manifold (including the case where k = d so the

k-face is a d-simplex). This would mean checking while growing

the simplex that no k-face is degenerate, and checking during the

walk that each added point is not directly on the hyperplane con-

taining the current facet. Implementing these checks ensures that

a legal Delaunay simplex is ultimately found (as opposed to a “flat”

simplex with zero volume). Finally, in the case where two points

p1 and p2 would define simplices with the same circumsphere in

conjunction with the current vertices ϕ, the choice between adding

p1 and p2 can be made arbitrarily since both solutions produce legal

Delaunay simplices.

In this work, the latter solution is preferred over ad hoc pertur-

bation since it allows for degeneracies to be handled at minimal

computational cost and is easily adapted to handle floating-point

error. A drawback of this method is that in the degenerate case,

the simplices obtained containing two nearby interpolation points

(though both simplices will be Delaunay) may not come from the

same Delaunay triangulation. This can create discontinuities in

the “surface” defined by the interpolant, but does not detract from

interpolation accuracy.

5.2 Dealing with Imprecision
The degeneracy problem is only exacerbated in the context of a

floating-point paradigm. Let ϵ be the working precision of the

floating-point environment. In this section, the case is considered

where an error of magnitude ϵ could occur in any computation.

Most notably, instead of checking whether the vertices of a De-

launay k-face lie exactly in a (k − 1)-dimensional linear manifold,

it is now necessary to check whether they are nearly in a (k − 1)-
dimensional linear manifold. Consider the d ×k matrixAwhose ith
column is given by Ai = pi+1 − p1 where pi is the ith vertex of the

current face. Then the vertices of the defining k-face are “nearly”
in a (k − 1)-dimensional linear manifold if the ratio between the

smallest and largest singular values σk/σ1 is less than ϵ .
Note that singular value decompositions are expensive and gen-

erally computed via iterative methods. So to save time, a check for

rank deficiency should only be performed after constructing the

complete first simplex. Then, if σd/σ1 < ϵ , the entire simplex must

be reconstructed with a check after each insertion so that a vertex

that causes a degeneracy can be immediately discarded. The case

where all vertices cause degeneracy at step k of the initial simplex

construction implies that P is contained in a (k − 1)-dimensional

linear manifold “up to the working precision” (where k ≤ d) so no

triangulation exists. After constructing the initial simplex, stability

can be ensured by only considering points that are a distance of ϵ
off the hyperplane containing the current facet.

It is also possible that a set of points that do not define a Delaunay
face could be computed as such due to floating-point error. For the

purpose of interpolation, this is not considered to be an issue since

the vertices of the resulting simplex must be within a perturbation

of magnitude ϵ of defining a Delaunay simplex. Therefore, the

computed simplex and the true Delaunay simplex can be thought

of as having the same circumspheres up to the working precision,

so the choice between them can be made arbitrarily.

Finally, points that are on or near the boundary of their contain-

ing simplex could be perturbed outside that simplex by floating-

point error. This could result in an infinite loop if the point is not

perturbed identically when checked for in the adjacent simplices.

Therefore, a simplex should be accepted as containing q if the affine

weights computed in Algorithm 3 are all greater than −ϵ (i.e., posi-

tive up to the working precision).

On a final note, the tolerance ϵ should be proportional to the

machine precision and should be scale/shift invariant. To achieve

scale/shift invariance, the input data set is translated and rescaled

to be centered about the origin with a radius of one.

6 IMPLEMENTATION
A serial numerically stable implementation of the proposed algo-

rithm has been coded in ISO Fortran 2003. Note that the value

chosen for the working precision was ϵ =
√
µ where µ is the unit

roundoff. This code was tested for correctness on over 10,000 data

sets ranging in size from n = 3 to n = 800 and ranging in dimension

from d = 1 to d = 4. For each data set, anywhere from one to

several hundred interpolation points were predicted using both the

described algorithm and the standard implementation of Quickhull.

On the non degenerate data sets, the code performed identically to

Quickhull up to a modest multiple of the machine precision. On the

degenerate data sets, a small sample of the largest discrepancies

were hand checked and confirmed to be resulting from degenera-

cies. The described real world data sets were gathered at Virginia

Tech for usage in the VarSys project. The data was also tested on a

small number of pseudo-random data sets in five dimensions, and

due to the lack of degeneracy in the random data, the algorithm

ACM SE ’18, March 29–31, 2018, Richmond, KY, USA T. H. Chang et al.

always computed simplices from Quickhull’s computed Delaunay

triangulation.

Using the proposed algorithm, run times were gathered for

pseudo-randomly generated point sets in up to 64 dimensions. Note

that the problem of computing a small number of simplices in the

triangulation is inherently easier than the problem of computing

an exponentially large triangulation. Subsequently, the proposed

algorithm can be timed in much higher dimensional spaces, where

computation via its competitors is either painfully slow or totally

infeasible. However, previous studies have managed to evaluate the

runtime of Quickhull and several other competitors in five dimen-

sions, and the runtime tables in Section 5 of [2] could be compared

to the data in Tables 2 and 3.

The following run times were gathered on an Intel i7-3770 CPU

@3.40 GHz running CentOS release 7.3.1611. All averages are based

on a sample size of 20 runs, each performed on a different pseudo

randomly generated data set. Table 2 details average run times for

interpolating at uniformly distributed interpolation points on a five-

dimensional uniformly distributed data set. Table 3 details average

run times for interpolating at clustered interpolation points (limited

to a hypercube with 10% of the original point-set’s diameter) on

a five-dimensional uniformly distributed data set. Table 4 details

average run times for interpolating at a single point in up to 64

dimensions over uniformly distributed data sets ranging in size

from 2K points up to 32K points. All input data sets consist of

pseudo-randomly generated points in the unit hypercube, generated

using the Fortran intrinsic random number generator. Times were

recorded with the Fortran intrinsic CPU_TIME function, which is

accurate up to either microsecond resolution or the precision of

the system clock.

Table 2: Average runtime in seconds for interpolating at
uniformly distributed interpolation points for n pseudo-
randomly generated input points in 5 dimensions.

n = 2K n = 8K n = 16K n = 32K

32 interp. pts 0.3 s 2.7 s 9.6 s 35.7 s

1024 interp. pts 2.5 s 11.6 s 28.9 s 79.1 s

Table 3: Average runtime in seconds for interpolating at clus-
tered interpolation points for n pseudo-randomly generated
input points in 5 dimensions.

n = 2K n = 8K n = 16K n = 32K

32 interp. pts 0.2 s 2.2 s 8.4 s 33.0 s

1024 interp. pts 0.2 s 2.5 s 9.2 s 35.2 s

Note that in the numerically stable implementation described,

expensive checks for rank deficiency, computation of the diameter

of P (an O (n2) operation), and daisy-chaining the simplex walk as

described in Section 4.4, leads to computation times that do not

scale as predicted in Section 4. However, the resulting algorithm

is still able to robustly compute the Delaunay interpolant on a

moderately sized data set in up to 64 dimensions, and the empirical

results clearly indicate a sub-exponential time complexity.

Table 4: Average runtime in seconds for interpolating at a
single point for n pseudo-randomly generated input points
in d-dimensional space .

n = 2K n = 8K n = 16K n = 32K

d = 2 0.1 s 1.7 s 6.8 s 27.0 s

d = 8 0.2 s 2.5 s 9.6 s 37.9 s

d = 32 1.4 s 9.5 s 29.7 s 101.1 s

d = 64 13.2 s 60.1 s 138.6 s 349.1 s

7 CONCLUSION AND FUTUREWORK
In this paper, a new Delaunay triangulation algorithm is proposed

for interpolating in point clouds in arbitrary dimension d . This is
achieved by computing a relatively small number of simplices from

the complete Delaunay triangulation. A robust numerically stable

implementation is empirically shown to scale to high-dimensional

spaces. In future work, the methods used to construct and locate a

single Delaunay simplex for the purpose of interpolation could be

extended for other Delaunay triangulation applications. In particu-

lar, knowledge of a Voronoi cell can be achieved by computing the

star of simplices incident at a given vertex.

REFERENCES
[1] C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. 1996. The Quickhull

Algorithm for Convex Hulls. ACM Transactions on Mathematical Software (TOMS)
22, 4 (1996), 469–483.

[2] Jean-Daniel Boissonnat, Olivier Devillers, and Samuel Hornus. 2009. Incremental

Construction of the Delaunay Triangulation and the Delaunay Graph in Medium

Dimension. In Proceedings of the twenty-fifth annual symposium on Computational
geometry. ACM, 208–216.

[3] Jean-Daniel Boissonnat andMonique Teillaud. 1993. On the randomized construc-

tion of the Delaunay tree. Theoretical Computer Science 112, 2 (1993), 339–354.
[4] Adrian Bowyer. 1981. Computing Dirichlet tessellations. Comput. J. 24, 2 (1981),

162–166.

[5] Siu-Wing Cheng, Tamal K Dey, and Jonathan Shewchuk. 2012. Delaunay Mesh
Generation. CRC Press.

[6] Paolo Cignoni, Claudio Montani, and Roberto Scopigno. 1998. DeWall: A Fast

Divide & Conquer Delaunay Triangulation Algorithm in Ed . Computer-Aided
Design 30, 5 (1998), 333–341.

[7] Mark de Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars. 2008.

Computational Geometry: Algorithms and Applications (third ed.). Springer-Verlag
Berlin Heidelberg.

[8] Herbert Edelsbrunner. 1989. An acyclicity theorem for cell complexes in d dimen-

sions. In Proceedings of the fifth annual symposium on Computational geometry.
ACM, 145–151.

[9] Herbert Edelsbrunner and Ernst Peter Mücke. 1990. Simulation of Simplicity:

A Technique to Cope with Degenerate Cases in Geometric Algorithms. ACM
Transactions on Graphics (TOG) 9, 1 (1990), 66–104.

[10] Richard J Hanson and Karen H Haskell. 1982. Algorithm 587: Two Algorithms

for the Linearly Constrained Least Squares Problem. ACM Transactions on Math-
ematical Software (TOMS) 8, 3 (1982), 323–333.

[11] Victor Klee. 1980. On the complexity of d-dimensional Voronoi diagrams. Archiv
der Mathematik 34, 1 (1980), 75–80.

[12] Ernst P Mücke, Isaac Saias, and Binhai Zhu. 1999. Fast randomized point location

without preprocessing in two-and three-dimensional Delaunay triangulations.

Computational Geometry 12, 1-2 (1999), 63–83.

[13] Stephen M Omohundro. 1990. Geometric Learning Algorithms. Physica D:
Nonlinear Phenomena 42, 1-3 (1990), 307–321.

[14] VT Rajan. 1994. Optimality of the Delaunay Triangulation in Rd . Discrete &
Computational Geometry 12, 2 (1994), 189–202.

[15] WE Schaap and R Van De Weygaert. 2000. Continuous Fields and Discrete Sam-

ples: Reconstruction through Delaunay Tessellations. Astronomy and Astrophysics
363 (2000), L29–L32.

[16] Peter Su and Robert L Scot Drysdale. 1995. A Comparison of Sequential Delaunay

Triangulation Algorithms. In Proceedings of the eleventh annual symposium on
Computational geometry. ACM, 61–70.

[17] David F Watson. 1981. Computing the n-dimensional Delaunay tessellation with

application to Voronoi polytopes. Comput. J. 24, 2 (1981), 167–172.

	Abstract
	1 Introduction
	2 Background
	2.1 Definitions
	2.2 Optimality of the Delaunay Interpolant
	2.3 Related Works and Limitations

	3 Necessary Operations
	3.1 Growing a Delaunay Simplex
	3.2 Completing an Open Facet
	3.3 Visibility Walk

	4 Delaunay Interpolation Algorithm and Analysis
	4.1 Algorithm Description
	4.2 Time Complexity
	4.3 Space Complexity
	4.4 Optimizations
	4.5 Extrapolation

	5 Issues in Stability
	5.1 Dealing with Degeneracies
	5.2 Dealing with Imprecision

	6 Implementation
	7 Conclusion and Future Work
	References

