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ABSTRACT
The ever-increasing sophistication of malware has made malicious

binary collection and analysis an absolute necessity for proactive

defenses. Meanwhile, malware authors seek to harden their bi-

naries against analysis by incorporating environment detection

techniques, in order to identify if the binary is executing within

a virtual environment or in the presence of monitoring tools. For

security researchers, it is still an open question regarding how

to remove the artifacts from virtual machines to effectively build

deceptive “honeypots” for malware collection and analysis.

In this paper, we explore a completely different and yet promis-

ing approach by using Linux containers. Linux containers, in theory,

have minimal virtualization artifacts and are easily deployable on

low-power devices. Our work performs the first controlled experi-

ments to compare Linux containers with bare metal and 5 major

types of virtual machines. We seek to measure the deception capa-

bilities offered by Linux containers to defeat mainstream virtual en-

vironment detection techniques. In addition, we empirically explore

the potential weaknesses in Linux containers to help defenders to

make more informed design decisions.
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• Security and privacy → Malware and its mitigation; Soft-
ware security engineering;
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1 INTRODUCTION
As malware and botnets grow in sophistication, many malware

authors attempt to harden their malicious binaries against secu-

rity analysis and reverse-engineering by conducting environment

checks [17]. When malware detects a virtual environment or moni-

toring tools, it may modify its behavior during execution to evade

detection. Researchers have suggested that up to 40% of the mal-

ware in the wild alter their malicious behavior when executing

in a virtual environment or a debugger [3] and the defeat of their
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detection methods remains an open problem within the security

community today.

The evasive behavior of malware presents a significant challenge

for security researchers who implement high-interaction honeypots

to capture and analyze malware. This is particularly true for orga-

nizational networks, government agencies and large data centers,

which have recently become the primary targets of malware infec-

tions [9]. If the virtualized nature of their honeypots is detected, it

will cause major false negatives, leading to significant delays for

discovering and reporting malware infections for the rest of the

networks and organizations.

In recent years, the ubiquity of Linux systems, including the rapid

growth of IoT devices running Linux, calls for new Linux-based

honeypots that can defeat virtual environment detection techniques.

Indeed, early in 2017, security researchers have discovered what

is believe to be the first example of VM-aware malware targeting

Linux-based IoT systems with the identification of the “Amnesia”

botnet that exploits the DVR component of specific CCTV cam-

eras [27].

Under this trend, it is high time to explore new methodologies

for developing Linux-based honeypots that can defeat adversarial

environment tests from evasive malware. In this paper, we explore

the possibility of using Linux containers as a substitute for virtual

machines (VM) in high-interaction honeypots. A Linux container

is an OS level virtualization method for running multiple isolated

Linux systems (i.e., containers) using a single Linux kernel. A Linux

container offers a similar environment as a VMwithout the need for

running a separate kernel or simulating the hardware. This design

has the potential to remove numerous artifacts from the VM as an

out-of-the-box defense against virtual environment detection tech-

niques. In addition, the low overhead of running Linux containers

also allows for much greater scalability of honeypot deployment.

Although Linux containers are promising in theory, its effectiveness
against VM detection techniques has not been sufficiently evaluated

empirically so far.

In this work, we provide the first systematic evaluation on Linux

containers using controlled experiments to answer three key ques-

tions. First, how well can Linux containers defeat common virtual

environment detection methods (§4)? Second, how well can Linux

containers defeat monitoring tool detection methods (§5)? Third,

what are the new artifacts (if any) that Linux containers intro-

duce that can be exploited by future malware (§6)? By thoroughly

discussing the advantages and potential new problems of Linux

containers, we hope our results can help future honeypot designers

to make more informed decisions.

We answer these questions by setting up a realistic testbed to

run a series of VM detection tests on Linux containers in a variety

of hardware settings (e.g., 3 types of CPU chipsets are used). The
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implemented tests focus on hardware-based detection methods

which are historically the most difficult artifacts to mask in virtual

environments. We compare the performance of Linux containers

with “bare mental” and 5 mainstream virtual machine software.

Our study has 3 key findings (or contributions):

• Our experiments confirm that mainstream VMs can be (eas-

ily) identified by hardware-level environment detection

techniques such as CPU clock sampling, reported CPU infor-

mation and instruction execution time. A Linux container,

for its lack of virtualization and direct interface with the

host kernel, has returned a similar profile to “bare metal”,

defeating these detection methods natively.

• An initial investigation shows Linux containers are very

promising to defeat environment detection methods that

examine in-host monitoring tools. This is largely attributed

to Linux containers’ employment of kernel namespaces,

which grants in-host monitoring with high semantic details

and helps to overcome detectionmethods that check popular

monitoring and debugging tools.

• We also find that Linux containers are vulnerable to new

methods of identification that exploit the implementation

tools of containers, such as namespaces and permissions.

Some of the newmethods are more difficult to run for attack-

ers (e.g., requiring root), but not impossible. This suggests

honeypot designers need to carefully handle these artifacts

when deploying Linux containers for deceptive malware

analysis.

Overall, the use of Linux containers for deception-based secu-

rity provides an additional and beneficial tool for researchers if

implemented with a strong set of assumptions on an attacker’s

environment detection methods. Our investigation comes at a crit-

ical time when IoT-targeting malware is increasing in frequency

and threat [1]. Leveraging Linux containers on low-power devices

grants highly scalable honeynets that are capable of defeating many

virtual environment detection methods. Our result also shows the

possibility of new adversarial tests against Linux containers. Future

research will look into possible countermeasures against container-

based environment tests.

2 BACKGROUND AND RELATEDWORK
2.1 Honeypot
As botnets pursue ever-stealthier means of communication, it is

simply insufficient for security researchers to monitor network

traffic in order to study the proliferation and activity of malicious

software [28]; monitoring malware behavior on a host becomes

increasingly essential. Discussed frequently throughout literature is

the importance of the role honeypots play in the ongoing struggle

to understand and defeat botnets and other malware [4, 11, 18, 20,

23, 24, 26]. A honeypot is typically defined as a system (or group of

systems) that is designed to pose as a legitimate server waiting to

receive incoming connections, but has no production value; instead,

it monitors and logs all interactions it has with outside entities [20].

Honeypots are widely developed within the open-source com-

munity with nearly 1,000 honeypot related repositories on GitHub

possessing functionalities that span a wide range of capabilities.

High-interaction honeypots are fully functional servers and systems

running in virtual environments in order to provide containment

and isolation from production systems as well as aid monitoring,

where low/medium-interaction honeypots are emulations of given
systems and services consisting of rapid approximations of how

the advertised services would respond to network requests [24].

Combining the low-cost versatility afforded by low-power single-

board computers with the emerging use of honeypot sensors in

a honeynet, security researchers and administrators are given the

ability to deploy cheap sensors throughout one or more networks

to collect data on network penetration attempts and new exploits

as they are used in the wild [5]. The only limitation in such a hon-
eynet is the reduced deception afforded by low/medium-interaction

honeypots as the CPU resource overhead imposed by virtual ma-

chines for high-interaction honeypots on single-board computers

is prohibitive.

2.2 Virtual Environment
Virtual machines provide an ideal environment for use in high-

interaction honeypots for containment of malware and fast image

restoration [24] [11] [4]. After a successful penetration by malware,

actions can be safely contained within the VM and, upon attack

completion, the environment can be quickly restored.

2.3 Linux Containers
Linux containers are the product of tying together two Linux tech-

nologies, namespaces and cgroups, that provide isolation and con-

tainment for one or more processes from the rest of the host, ef-

fectively abstracting applications away from the operating system.

The initial development of containers is called Linux Containers

(otherwise referred to as LXC), which allows multiple Linux sys-

tems to be run on the same host, sharing only the system kernel.

Each of these containers ‘feel’ like its own entire Linux system and

are isolated from both each other and the host system (as opposed

to container implementations such as Docker).

A significant component to the reduced overhead of Linux con-

tainers is that they execute on the host kernel, thus do not duplicate

any kernel functions. As an isolated example, during experimenta-

tion a particular code sample added approximately 6% execution

time when compared to bare metal execution on the same sys-

tem; the same code sample added approximately 41% when being

executed in KVM.

Implementing high-interaction honeypots with containers on

low-power devices provides a new intersection between honeypot

interaction level and system resource expense (as depicted in 1).

The full amount of interaction afforded by virtual environments

in high-interaction honeypots can now be utilized on low-power

devices through the use of Linux containers.

It needs to be noted that honeypots executing within Linux

containers carry different security concerns than honeypots within

a virtual environment. This is due to code within the container

being run on the same kernel as the host machine. Mechanisms are

in place that attempt to minimize the impact a container may have

on the performance of the host machine, but risk consideration

must be taken into account.



LOW
HIGH

HIGH

System Resource Expense

In
te

ra
ct

io
n

Low/Medium-
Interaction Honeypots

High-Interaction 
Honeypots

High-Interaction 
Honeypots

(with containers)

Figure 1: Chart depicting traditional honeypot interaction
capabilities contrasted with system resource expense.

2.4 Related Work
Much of the attention regarding VM-aware malware has focused

on malicious binaries already loaded on to a system that, during

execution, perform some environment checks in order to determine

if it is operating in a virtual environment [6] [12] [21]. These en-

vironment checks can range from simply checking the file system

for tell-tale indicators such as standard VMWare network adapter

drivers, to testing for the presence of model-specific CPU errors

that aren’t replicated in a simulated system [12].

One of the most well-known detection mechanism is related to

timing, where specific operations are performed and the elapsed

time is compared to an expected reference; if the operation took

longer than expected or frequent executions of the operation have

a wide variance in execution time, a program can assume it is op-

erating in a virtual environment [21]. The reason for the delay is

inherent to the virtualization technology, where, at minimum, sev-

eral CPU instructions are either emulated in software or captured

and translated to other instructions, thus creating an additional

time overhead [7].

BareMetal Implementation. Amechanism to implement sev-

eral of the key features of using virtual machines for binary analysis

on bare metal systems was explored in [12] where a highly modified

OS allowed a state of the bare metal execution environment to be

captured and later restored after analysis of the malware execution

was complete. Unfortunately, the framework is complicated and

requires a modification of the running operating system that will

be dependent upon the hardware utilized by the bare metal system.

Transparent Virtual Environments. Attempts have been

made to develop fully transparent virtual environments that are

invisible to malware; Cobra and Ether are two often cited examples

of this attempt. However, both virtual environments had ultimately

fallen short of their goal, revealing their presence either through

inaccurate CPU semantics or through timing tests with verification

from outside sources [21] [19]. It has even been argued by Garfinkel,

et al. in [8], that a fully transparent virtual environment is impossi-

ble to achieve due to the necessary deviations virtual environment

developers must make that are different from the hardware they

are emulating.

VM-AwareMalwareDetection. In [2], Balzarotti, et al. demon-

strated a system that compares the behavior of malware executing

on highly controlled bare-metal and a virtual system. The authors

found their technique to be reliable and efficient at detecting what

they referred to as a ‘split personality’, where malware behaves

differently depending on the environment it is being run in.

The three techniques outlined have yet to provide researchers

with a currently usable and easy to implement tool that allows

deceptive environments to avoid virtual environment detection.

The capabilities of Linux containers grant easy replacement of

virtualization in deceptive environments and is capable of defeating

many well-known virtual environment detection methods out of

the box.

3 SECURITY MODELS
This paper focuses on the threats to Linux systems from sophisti-

cated malicious binaries attempting proliferation through network

connections. The malware seeks to evade the sandbox analysis by

proactively detecting the virtual environment and monitoring tools

and altering behavior accordingly. Our paper explores the possi-

bility of using Linux containers to defeat common tactics used by

malware authors to detect virtual environments. Below, we briefly

discuss the common methods by which a binary can identify the

malware sandbox by detecting a virtual environment or monitoring

and debugging tools.

Detecting the VM Environment. Virtual environment detec-

tion can be broadly divided into the categories of operating system

artifacts and hardware artifacts [2, 3, 6, 13, 21]. Operating system

artifacts are tell-tale signs that a binary is operating within a virtual

environment through the names of drivers and processes, the pres-

ence of specific files, or the configuration of the operating system.

Hardware artifacts include indicators from instruction execution,

such as increased execution time or increased variability in execu-

tion time, or hardware configurations found only in virtual environ-

ments, such as abnormal CPU information reporting or hardware

identifiers specific to virtual environments. As an example, the

detection method utilized in the previously mentioned ‘Amnesia’

botnet detects hardware artifacts listed in /sys/class/dmi/id/ prod-

uct_name and /sys/class/dmi/id/sys_vendor by searching for the

text strings ‘VirtualBox’ and ‘QEMU’ [27].

In order to conduct a preliminary investigation into Linux con-

tainer’s abilities to defeat virtual environment detection methods,

select tests were generated based on discussions in literature, as

well as online security forums, and tested against an array of system

configurations, both to validate the ability of the test to detect a vir-

tual environment as well as test its detection of a Linux Container.

In order to be functional virtual environment detection methods,

the tests must be capable of identifying when it is executing in a

bare metal environment and when it is executing in a virtual one.

As most operating system artifacts, such as tell-tale network

interface card MAC addresses, can be eliminated through careful

configuration [17], the focus of this investigation is on detection

methods that identify abnormalities in the hardware environment

and performance. The selected detection methods to test are:

• Variability and execution time in CPU clock sampling

• Reported CPU information



• Instruction execution time

Detecting Debugging and Monitoring Tools. In addition to

detecting virtual environments, malware authors may also try to

recognize the malware analysis sandbox by detecting the presence

of monitoring and debugging tools. Evidence shows that malware

has indeed tried to probe the debugging software in an attempt to

thwart monitoring and analysis of their attacks [2, 3]. Our experi-

ment will test related tactics on Linux containers.

Roadmaps. In section 4, we conduct three experiments in order

to assess the feasibility of Linux Containers to defeat traditionally

difficult virtual environment detection methods. In addition to de-

feating environment detection tests, we investigate the ability of

Linux containers to defeat two different types of monitoring tool

detection methods in Section 5. Additional deception techniques

enabled by Linux Containers, specifically when implemented on

low-power devices, are also explored in Section 5. In Section 6, de-

tection methods of Linux Containers are investigated to determine

if containers are susceptible to their own unique types of detection.

4 VM DETECTION EXPERIMENTS
4.1 Experiment Setup
In order to avoid a bias against particular hardware architecture

goals and virtual environments, a variety of CPU chipsets and

virtual environment software were included in this study. The hard-

ware chipsets included in this study are:

• 1 xMinnowboard Turbot Intel Atom x86 64-bit Single-Board

Computer

• 1 x “Desktop Class" Intel Core i5-2400 system

• 1 x “Server Class" Intel Xeon E5320 system

Additional low-power devices using the ARM architecture were

sought for this study as they are a frequently used low-power device

chipset. Unfortunately, due to driver incompatibilities, a common

testing environment across all hardware platforms with the chosen

operating system could not be established that would allow direct

comparison across all systems. Additional ARM hardware support

included in recent Linux mainline kernel versions is expected to

resolve this dilemma in the near future.

Each system was installed with Ubuntu 16.04 as the host op-

erating system. Ubuntu was selected due to its prominence as a

Linux desktop environment and in commercial servers. Canonical

is also the developer for LXC and is expected to provide the great-

est support for Ubuntu environments. Ubuntu 16.04 was the latest

Long-Term Support version available at the start of this study.

LXD version 2.12 was installed on all systems. LXD is the man-

agement daemon for LXC developed by Canonical, which provides

easier management of LXC containers.

Virtual environments included in this study were sought to iden-

tify popular types that span multiple implementations. The virtual

environment software included in this study consists of:

• VMWare Workstation, Ver 12.5.2

• QEMU, Ver 2.5.0

• KVM, Ver 2.5.0

• Xen Paravirtualized (PV), Ver 4.6.0

• Xen Hardware Assisted (HVM), Ver 4.6.0

Software Type Implementation
QEMU Type II Full software emulation

KVM Type II Hardware assisted

VMWare Type II Full virtualization / Hardware assisted

Xen PV Type I Paravirtualized

Xen HVM Type I Hardware assisted

Table 1: Table of tested virtual environments and their prop-
erties.

Table 1 provides a brief listing of the implemented virtual envi-

ronments and their properties; the breakdown of virtual environ-

ment installation to physical host is included in Table 2.

4.2 Experiment Tests
In order to identify Linux container’s ability to defeat VM detection

three traditionally challenging detection methods to beat were

chosen for testing:

• Variability and execution time in CPU clock sampling

• Reported CPU information

• Instruction execution time

CPU clock variability seeks to sample the various system clocks

that are available on modern CPUs a high number of times, then

determine the amount of variability in the clock samples by calcu-

lating a mean and standard deviation. This is a test devised from

an online discussion regarding ‘red pill’ virtual environment de-

tection [22]. Due to the sharing of system resources and the need

to handle hardware and software interrupts on both the guest and

host system, it is expected that virtual machines will demonstrate a

variability in their clock timing sources that is not present in bare

metal operating environments.

CPU information testing merely queries the system for infor-

mation on the CPU and attempts to determine if there are any

abnormalities such as a non-standard CPU name or an unexpected

number of CPU cores. This test has been identified in [6] as an

effective means for detecting certain virtual environments due to

how the hypervisor, or the configuration of the hypervisor, presents

the physical attributes of the bare metal system to the virtual envi-

ronment. An additional test, demonstrated in code from [15], shows

an effective means of detecting hypervisors that advertise them-

selves by the CPUID instruction on x86 processors. When executing

CPUID, the 31st bit of the ECX register can (optionally) return a

value of ‘1’ if a hypervisor is present [25].

Execution time of instructions was outlined in several papers [3]

[8] [19] [21] as a candidate for virtual environment detection. The

overall concept is that by adding an additional layer of abstraction

in virtual environments, instruction execution will show a charac-

teristic increase. While simply tracking the amount of time taken

to execute an instruction may indicate the presence of a virtual

environment, the detection scheme would require a database of

baseline performance values for comparison. As recommended by

Garfinkel, et al., in [8], the instruction execution timing test com-

pares the execution time between two different instructions as a

means of generating a stand-alone comparison metric that does not

rely on referencing baseline performance values.



4.3 Experiment Results
The virtual environment detection methods were generally success-

ful in identifying the presence of a VM with the notable exceptions

of QEMU and Xen HVM. Due to QEMU being a hardware emulator,

it lacks a hypervisor, thus behaves similarly to bare-metal. How-

ever, QEMU’s extremely slow performance can be easily detected

when tested for. Xen HVM distinguished itself as a highly efficient

hypervisor and was the most resilient against detection, revealing

itself only when being selectively targeted during the Instruction

Execution Time test.

CPU clock variation was measured by sampling the timestamp

counter preceded by a CPUID instruction call, which was identified

as providing the greatest variability in execution. The timestamp

counter was sampled 255 times with a coefficient of variation being

calculated using the mean and standard deviation of time elapsed

between samples. Figures 2(a), 2(b), and 2(c) show a coefficient

of variation between 0.01 and 0.1 provided a good measure of de-

tecting non-virtual environments; coefficient of variation values

outside of those ranges were exclusively virtual. False negatives

were generated for QEMU and Xen HVM, which demonstrated bare

metal coefficients of variation. VMWare was omitted from figure

2(b) due to its significantly higher coefficient of variation value of

1.3.

When polling the test systems’ CPU information, most of the

virtual systems returned non-standard CPU results as illustrated

in Table 3. Both VMWare and Xen PV returned the name of the

bare metal CPU the virtual machine was executing on, however the

number of cores was not consistent with manufacturer specifica-

tions. Intel’s core i5-2400 processors support at minimum 2 cores,

while Intel’s Xeon E5320 have 4 cores. Both of these non-standard

results can indicate to malware that it is not executing in a bare

metal environment so long as the malware has a reference for the

proper number of cores for each CPU model.

QEMU, KVM, and VMWare hypervisors advertise their presence

within the CPUID registers, which quickly identifies those envi-

ronments as virtual; neither Xen PV nor Xen HVM advertise their

presence in CPUID. Only Xen HVM remained undetected by this

test by both correctly relaying all appropriate CPU information as

well as not advertising its presence in CPUID.

As Linux containers poll the system information directly from

the kernel, they returned results matching those of the bare metal

system.

As stated earlier, the instruction execution timing test was gen-

erated by comparing the execution time between two different

operations. A simple arithmetic operation was selected for a timing

baseline with the CPUID instruction selected as the second oper-

ation. CPUID was selected as the target function due to being an

unprivileged instruction call that interacts directly with the CPU,

anticipating a required interaction with the virtual environment

hypervisor to is expected to impact execution time. Dividing the

target function execution time by the base function execution time

generated an execution time ratio that was observed for various

environments.

Figure 3, displaying the results of 255 trials, illustrated that any

ratio value greater than 1 indicated the presence of a VM with false

negatives for QEMU and Xen. Replacing the CPUID instruction

System Installed Virtual Environments
Atom KVM

Core i5 QEMU, KVM, VMWare

Xeon QEMU, KVM, VMWare, Xen PV, Xen HVM

Table 2: Table of systems and installed virtual environ-
ments.

System CPU Information CPUID Flag

A
t
o
m

Bare Metal Atom E3826 x 2 No
KVM QEMU Virtual CPU Yes

Container Atom E3826 x 2 No

i
5

Bare Metal i5-2400 x 4 No
VMWare i5-2400 x 1 Yes

QEMU QEMU Virtual CPU Yes

KVM QEMU Virtual CPU Yes

Container i5-2400 x 4 No

X
e
o
n

Bare Metal Xeon E5320 x 8 No
VMWare Xeon E5320 x 1 Yes

QEMU QEMU Virtual CPU Yes

KVM QEMU Virtual CPU Yes

Xen PV Xeon E5320 x 2 No

Xen HVM Xeon E5320 x 8 No

Container Xeon E5320 x 8 No
Table 3: Results of CPU Information Test.

call with executing a memory mapping operation did successfully

identify both QEMU and Xen environments, however the result is

not as generic as the original CPUID test who’s indication ratio

remained consistent across all platforms tested; memory mapping

performance varies greatly across platforms and a single, platform-

agnostic ratio could not be identified for this instruction.

As expected, due to the difference in isolation techniques em-

ployed by Linux containers, as opposed to virtual environments, the

experiments identified that Linux containers are highly effective in

defeating the examined virtual environment detection methods. A

more detailed explanation of the tests implemented and the results

found was omitted for brevity due to the experiments confirming

intuitive expectations.

5 MONITORING TOOL DETECTION
Rather than exclusively detecting virtual environments, malware

authors have also attempted to detect the presence of monitoring

and debugging tools as a means to avoid analysis. As discussed in

[2] and [3], malware has been identified in the wild that attempts

to detect debugging software either in conjunction with, or in

replacement of, virtual environment detection tests in an attempt

to thwart monitoring and analysis of their attacks. This is a logical

approach for malware authors who don’t wish to exclusively target

end-user platforms, as the use of virtual environments has grown

tremendously in professional applications; to avoid attacking virtual

environments would be to limit an attacker from going after the

potentially most profitable targets.
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Figure 2: Coefficient of variation values of CPUID+RDTSC clock sampling for various environments on multiple host plat-
forms.
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Figure 3: Ratio results comparing arithmetic operation performance to CPUID performance for various environments on
multiple host platforms.

Fortunately, Linux containers, by use of their unique features,

may present a much less technologically challenging solution than

what was presented by Jian, et al., in [10] where the hypervisor

reconstructs semantic details of attack behavior while remaining

off the host to avoid detection, but with similar results for certain

types of monitoring tool detection methods.

Containers Defeating Recursive strace Detection.
A useful and popular monitoring tool used to record the behavior

of malware is strace, which allows the kernel to output the system

calls a process and its children make, providing a great amount of

behavior detail.

Unfortunately, a very simple test is available for malware to

determine whether it is being monitored by strace - attempting

to use strace on itself or one of its child processes. Due to an

implementation restriction in the tool, strace is not able to be

called recursively and fails, alerting the malware to the fact it is

being monitored.

Linux containers, through the means of process isolation, are

able to circumvent the recursive strace detection method. From

the host, strace may be called on any process executing within

the container (or on the container itself) in order to monitor the

system calls made by that process. Due to container isolation, if the

process being monitored attempts to call strace on itself or one of

its children, strace will execute normally and falsely indicate to

the malware that it is not under analysis.

Containers Defeating Debugger Detection in /proc/self/sta-
tus.
Another debug detection mechanism that is available to malware

is reading information present in the Linux /proc/self/status file

in the process file system. By searching that file for the text string

“TracerPid:”, its presence will indicate to a malicious binary that a

debugging tool, such as gdb or strace is currently monitoring its

execution. A debugger detection test was written using a slightly

modified code example provided by Sam Liao in [14], testing for

for both gdb and strace and correctly identified the presence of

a monitoring tool. However, when using strace from the host

system to monitor the process within a Linux container, the tool

did not detect the presence of the process tracer.

These preliminary tests show great promise in using Linux con-

tainers to defeat debugger and monitoring tool detection methods,

which are an identified and present threat to security analysis. Us-

ing the terminology of Jiang, et al., this unanticipated benefit from

the use of Linux containers grants researchers “in-host” semantic

detail of malware behavior with “out-of-host” detection prevention.



Atom i5 Xeon

Max 122.33 8.95 8.30

Median 113.97 8.58 7.66

Min 10.16 7.58 7.52

Table 4:Max,min, andmedianCPU cache latency values (ns)
for Intel Atom, Core i5, and Xeon CPUs.

Additional Deception Capacities for Low-Power Devices.
There are additional deception capabilities offered by Linux con-

tainers when employed for the purposes of honeypots and malware

analyzation beyond just masking its presence from traditional vir-

tual environment detection methods, but they are not without their

limitations.

As containers are abstracted from many aspects of the host

OS, each container can have its particular software load-out highly

configured, to include running entirely different Linux distributions,

so long as they are compatible with the host kernel. This grants

great flexibility for security researchers who need to satisfy specific

software and version installation requirements for malware that is

targeting a very specific exploit.

6 CONTAINER DETECTION
Adopting Linux container usage as a means to defeat virtual envi-

ronment detection tests leads to a follow-on question: Can Linux

containers be detected by malware just as virtual environments are?

As virtual environment detection tests generally focus on discov-

ering discrepancies between what a bare metal machine will look

and behave like versus what a virtual machine looks and behaves

like, Linux container detections tests would seek to identify traits

or characteristics that would be different when executed inside a

container versus bare metal.

As Linux containers are managed by the operating system kernel

and execute directly on the hardware, many of the virtual envi-

ronment detection discussed earlier are not effective against Linux

containers due to the different attack surface presented; attackers

will need to focus their attention on the possible gaps in isolation

methods employed by Linux containers in order to identify the

virtual environment.

6.1 Hardware Classification from within a
Container using Cache Latency

When considering the deception capabilities of Linux containers

when used as honeypots, a natural question may arise whether the

host hardware can be masked and presented as something different,

as may be done in several virtual environments. Unfortunately,

due to the container executing directly on the kernel of the host

system, the OS kernel and hardware layout must match that of the

host system. This limitation is unfortunate as it would be beneficial

for a lower-power, low-cost system to masquerade as a high-end

system. Even considering the situation where a kernel may be

configured to present a false hardware profile to system calls, the

actual performance of the system hardware can reveal its true

nature.

As an example, an attacker may attempt to identify a low-power

device by its cache latency; low-power CPUs often sacrifice perfor-

mance for power efficiency and can be identified by their signifi-

cantly reduced performance. Using the program lmbench, cache

latency was measured for arrays ranging in 0.35 to 1.5 MB in size,

being read using Fread with a stride size of 512kb on multiple bare

metal hosts. The results, shown in Table 4, clearly identify which

host has the low-power CPU.

6.2 Container Detection using Namespaces
An example of container detection through namespace isolationwas

identified in late 2016, being employed by the VLANYLD_PRELOAD

rootkit malware source code that was published online [16]. The

VLANY rootkit is designed to contain a large number of stealth and

anti-detection features, one of which is a technique to identify if the

code is running within an LXC container by means of comparing

the number of processes listed by the ps command and the number

of processes provided by sysinfo.

This test identified a lapse in coverage by Linux kernel names-

paces in that ps lists the processes owned by the container, yet the

sysinfo command still enumerates the total number of processes

running on the entire host. If ps provides a significantly smaller

process count than sysinfo (VLANY rootkit tests for a discrepancy

greater than 200), then it is assumed that ps is restricted by user

namespaces and hiding the true number of total processes. Results

for the Namespace test are listed in 5, illustrating accuracy at cor-

rectly identifying container environments with the exception of

the Atom system, which operates with a non-GUI installation of

Ubuntu and has a significantly lower process count than the other

Ubuntu installations.

It is anticipated that sysinfowould need to be updated to account

for kernel namespaces in order to prevent this type of container

discovery method; however, other lapses in namespace isolation

may also be present.

6.3 Container Detection using Permissions
Another area in which Linux containers may be revealed is in user

permissions. Through the use of containers, there arises a unique

condition in which a user may be in possession of root privileges

in a container, but the container itself is unprivileged. Within the

container namespace, such a user will be operating with a UID of

0, however, on the host, the user’s actual UID will be that of an

unprivileged user. This generates a scenario in which a user with

root privileges in a container may attempt to perform an operation

on the system that they expect to be successful but are denied.

As an example, the Linux command dmidecode requires root

privilege in order to access the DesktopManagement Interface table.

When attempting to perform the Linux command dmidecode as

a root user in an unprivileged container, the kernel reveals the

lack of requisite permissions. Results are presented in Table 5 and

demonstrate container detection with perfect accuracy.

Defeating permissions-related container detection tests remains

an open problem. A possible solution would be for privileged users

within an unprivileged container to be granted read-only permis-

sions in order to access system resources. Unfortunately this will

not be an effective counter-measure for permissions checks that



System Namespace Test Permission Test

A
t
o
m

Bare Metal No No
KVM No No

Container No Yes

i
5

Bare Metal No No
VMWare No No

QEMU No No

KVM No No

Container Yes Yes

X
e
o
n

Bare Metal No No
VMWare No No

QEMU No No

KVM No No

Xen PV No No

Xen HVM No No

Container Yes Yes
Table 5: Results of Container Detection Tests.

seek to modify system aspects, such as the CPU governor. As such,

at this time there is no effective means to defeat this Linux container

environment test for an attacker with root access.

7 CONCLUSION
This paper explored the use of Linux containers as a means to defeat

several types of virtual environment and monitoring tool detection

methods when used as an alternative to virtualization. Additionally,

this paper explored the deception capabilities currently offered by

Linux containers, as well as their suitability for deployment on

low-power devices due to the minimal resource overhead.

During the investigation it was identified that there are limi-

tations to the deception such systems are capable of, such as the

understanding that the hardware and kernel presented within the

container must match that of the host system; security researchers

and administrators need to be aware of such limitations in order to

make informed decisions on what deception tactics are appropriate

for low-powered devices.

Of serious concern is the apparent readily available container

detection methods investigated. While successfully hiding their

presence to VM detection methods, containers appear to be suscep-

tible to tests seeking to identify their presence. Namespace isolation

tests may potentially be correctable in future versions; however,

permission discrepancies, particularly when containers are em-

ployed for honeypots that are intended to grant a root interface

to an attacker, are easily identifiable and lack a straightforward

solution.

As such, containers should be employed to defeat environment

detection methods only when container detection is not anticipated

to be employed. Without a clear road ahead to resolving the ease

of detectability, the use of Linux containers as honeypots, while

ideally suited for deployment on low-powered devices, may have a

rocky and short-lived future.
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