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Abstract—Securing the networks of large organizations is technically challenging due to the complex configurations and constraints.

Managing these networks requires rigorous and comprehensive analysis tools. A network administrator needs to identify vulnerable

configurations, as well as tools for hardening the networks. Such networks usually have dynamic and fluidic structures, thus one may

have incomplete information about the connectivity and availability of hosts. In this paper, we address the problem of statically

performing a rigorous assessment of a set of network security defense strategies with the goal of reducing the probability of a

successful large-scale attack in a dynamically changing and complex network architecture. We describe a probabilistic graph model

and algorithms for analyzing the security of complex networks with the ultimate goal of reducing the probability of successful attacks.

Our model naturally utilizes a scalable state-of-the-art optimization technique called sequential linear programming that is extensively

applied and studied in various engineering problems. In comparison to related solutions on attack graphs, our probabilistic model

provides mechanisms for expressing uncertainties in network configurations, which is not reported elsewhere. We have performed

comprehensive experimental validation with real-world network configuration data of a sizable organization.

Index Terms—Network security, attack graph, probabilistic model, vulnerability analysis, optimization

Ç

1 INTRODUCTION

LARGE organizations need rigorous security tools for ana-
lyzing potential vulnerabilities in their networks. How-

ever, managing large-scale networks with complex
configurations is technically challenging. For example, orga-
nizational networks are usually dynamic with frequent con-
figuration changes. These changes may include changes in
the availability and connectivity of hosts and other devices,
and services added to or removed from the network.

Network administrators also need to respond to newly
discovered vulnerabilities by applying patches and modi-
fications to the network configuration and security poli-
cies, or utilizing defensive security resources to minimize
the risk from external attacks. For instance, to prevent a
remote attack targeting a host it is useful to analyze the
candidate defensive strategies in choosing installation and
runtime parameters for one or several intrusion preven-
tion systems (IPSs).

To facilitate a scalable security analysis of organiza-
tional networks, attack graphs (e.g., [1], [2]) were pro-
posed. Attack graphs show possible attack paths with

respect to a particular network setting, which provide the
necessary elements for modeling and improving the
security of the network.

Existing work utilizes attack graphs (for example, [1], [2],
[3]) for analyzing the security risks by quantifying attack
graphs using a variety of techniques, such as Bayesian belief
propagation [4], [5], [6], [7], basic laws of probability [8], [9],
and vertex ranking algorithms [10], [11]. These models lack
a systematic and scalable computation of optimized net-
work configurations. Current attack graph quantification
models assume a network with known and fixed configura-
tions in terms of the connectivity, availability and policies
of the network services and components disregarding the
dynamic nature of modern networks. Moreover, except for
a few attempts [6], [12], [13], [14], rigorous techniques for
risk reduction have not been reported.

We present a rigorous probabilistic model that measures
the security risk as the probability of success in an attack.
Our probabilistic model referred to as the success measure-
ment model has three main features: (i) rigorous and
scalable model with a clear probabilistic semantic, (ii)
computation of risk probabilities with the goal of finding
the maximum attack capabilities, and (iii) considering
dynamic network features and the availability of mobile
devices in the network.

As an application of our success measurement model, we
formalize the problem of utilizing network security resour-
ces as an optimization problem with the goal of computing
an optimal placement of security products across a network.
Our new contribution is to define this optimization problem
and provide an efficient algorithm based on a standard
technique called sequential linear programming (SLP). Our

� H.M.J. Almohri is with the Department of Computer Science, Kuwait Uni-
versity, Kuwait. E-mail: almohri@cs.ku.edu.kw.

� L.T. Watson is with the Departments of Computer Science and Mathemat-
ics, Virginia Tech, Blacksburg, VA 24060. E-mail: ltw@cs.vt.edu.

� D. Yao is with the Department of Computer Science, Virginia Tech,
Blacksburg, VA, 24060. E-mail: danfeng@cs.vt.edu.

� X. Ou is with the Department of Computing and Information Sciences,
Kansas State University, Manhattan, KS 66506. E-mail: xou@ksu.edu.

Manuscript received 16 Dec. 2013; revised 31 Jan. 2015; accepted 3 Mar.
2015. Date of publication 9 Mar. 2015; date of current version 13 July 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2015.2411264

474 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 4, JULY/AUGUST 2016

1545-5971� 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:


algorithm is proved to converge and it is scalable to large
networks with thousands of components and attack paths.
Our contributions in this paper include:

� A scalable probabilistic model that uses a Bernoulli
model to measure the risk in terms of the probability
of success to achieve an attack goal.

� An efficient security optimization model, generated
based on a quantified attack graph, to compute an
optimal placement of security products according to
organizational and technical constraints.

� Modeling dynamic network features for a realistic and
accurate analysis of the risk associated with modern
networks.

The results of our experiments confirm three key proper-
ties of our model. First, the vulnerability values computed
from our model are accurate. Our manual inspection of the
results confirm that the probability values obtained in the
experiments correlate to the vulnerabilities of components
in the network. Second, our security improvement method
efficiently finds the optimal placement of security products
subject to constraints. Third, we quantify the additional
vulnerabilities introduced by mobile devices of a dynamic
network. Our results indicate that an infected mobile device
within the trusted region creates a preferred attack direction
towards the attack target, which increases the chance of
success at the target host. Our implementation efficiently
computes the probabilities throughout large attack graphs
with a quadratic execution performance.

2 RELATED WORK

The literature has a significant number of attempts to
provide methods, algorithms, and tools for the various
problems concerning graph-based analysis of security in
large networks. Graph-based analysis of networks was pro-
posed in [15] where a graph of attack stages in a network
topology was introduced to analyze specific attacks in a
network. The work in [15] was followed by the method
proposed in [16] that in addition to producing attack graphs
using model checking, introduced an analysis of guarding
options against the attacks.

The effort to enhance graph-based analysis and security
hardening has continued since [15] and [16]. Unfortunately,
some of the ongoing challenges facing automated network
security analysis remain unresolved. Per our survey, the
literature lacks a comprehensive and rigorous methodology
for the assessment of a set of network security defense
strategies with the goal of reducing the success of an attack.
In the following, we present a thorough comparison of our
work with the related research followed by a summary of
the novelty of our work.

2.1 Probabilistic Analysis

Using the probability theory to compute a quantitative
security has been reported in [4], [5], [9], [17]. For example,
Wang et al. [9] designed a probabilistic model for comput-
ing a security risk metric using attack graphs. A recent
work models the behaviors of complex cognitive radio
software with hidden Markov models [17].

Bayesian analysis of networks using attack graphs [5],
[6], [7] differs from our success measurement model in that

our model does not require the knowledge of conditional
probabilities. In [5], a dynamic Bayesian network model
was proposed that is capable of incorporating temporal
factors. Bayesian threat probability based on security and
organization-specific knowledge as well as attacker profile
is discussed in [4]. Xie et al. [7] introduced a Bayesian model
that adds a node to the Bayesian network indicating
whether or not an attack has happened. Although this
extension improves the models in [5], it does not capture
the various possibilities of attack paths taken by an attacker
before reaching an intermediate attack goal, which is
addressed in our work.

The work in [18] attempts to broaden the definition of
attack graphs as well as providing algorithms for predict-
ing vulnerabilities in the network. This work introduces
temporal probabilistic attack graphs that are used to
update the vulnerability information in time. Our work
differs with [18] in the modeling assumption. The proba-
bilistic attack graph presented in [18] models time
intervals for each attack step that may or may not occur
with specific probabilities. While this is a very useful
approach, our work models a direct attack step probabil-
ity based on the Bernoulli model of successes and failures
considering uncertainties in an attacker’s action and a
notion of device availability (i.e., assuming a device may
not always be connected to the network). Despite that we
share the same goal of mitigating security risks, our work
takes a different approach through the application of
efficient mathematical programming methods to security
optimization problems that we point out in Section 3.

The work in [9] discusses an interpretation of the metric
and a heuristic to compute the metric. In our work, we
provide a success measurement model that generalizes the
method in [9] by capturing the uncertainty in attacker’s
choices (discussed as a random selector in Section 4).

2.2 Ranking

In attack graph ranking, an initial input score is used to
bootstrap a ranking algorithm that produces a quantified
attack graph. A number of attack graph ranking algorithms
are inspired by and extensions of PageRank [19]. PageRank
is an algorithm proposed by Page et al. [19], which is used
to rank important webpages.

AssetRank [11] was proposed to rank any dependency
attack graph using a random walk model. AssetRank is a
generalization of PageRank extending it to handle both
conjunctive and disjunctive nodes. AssetRank is supported
by an underlying probabilistic interpretation based on a
random walk. Mehta et al. propose a ranking method using
state enumeration attack graphs [10]. The idea of PageRank
is applied to state enumeration attack graphs with a modi-
fied interpretation of the ranking. Attack graphs based on
model checking have been proposed in [16] formalizing an
intrusion attack in a finite state model. Authors in [16] do
not propose a complete attack graph ranking method.
Instead, a method to compute minimal critical attack assets
based on user-specified metrics has been introduced.

Other approaches to security assessments include a
goal-motivated attacker model based on a Markov decision
process [20], a weakest-adversary approach to ranking
attack graphs [21], a generic framework for an attack
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resistance metric [22], and an enterprise IT risk metric
using CVSS scores [23].

2.3 Security Improvement

Quantified attack graphs or similar formalism are particu-
larly useful when utilized as a basis for improving the
security of a network. The authors in [6], [13] proposed
solutions for the security hardening problem as a multiob-
jective optimization problem. The main advantage of our
work compared to the use of genetic algorithms in [13] is
that we formulate the security hardening problem as a
general mathematical programming problem that is
directly developed according to an attack graph. The
mathematical programming problem presented in this
paper can be extended to consider a variety of constraints
that we discuss as a future direction. Moreover, our work
differs in the research goal as we focus on reducing the
success rates of attackers, whereas the work in [13] is on
optimizing costs (similar to [12]) and reducing damages.
Noel and Jajodia presented a greedy solution for the
problem of the best placement of IDS sensors in a network
using attack graphs [14]. The solution finds a minimal
number of sensors that can cover all critical attack paths.
Wang et al. proposed a method for finding the (initial)
conditions that need to be removed to improve network
security [24]. Both these solutions aim at reorganizing the
networks to improve security. In comparison, our work
provides network hardening solutions beyond network
reorganization. Our probabilistic model supports the
computation of optimal network security defense
strategies.

Huang et al. proposed a method for distilling the critical
attack graph surface iteratively through minimum-cost SAT
solving [25]. The presented method is useful in finding the
most critical attack path, which can be considered later for
hardening the security of the network. Such a result can be
used to guide our improvement recommendation method
to consider hosts found on a critical path.

In [8], a probabilistic metric was introduced. The core
component of the proposed work is to simulate the attack
scenario and provide recommendation options to find a
better configuration of the network. Comparably, our
improvement model is not limited to making an optimal
choice between available configuration options. Our work
goes further by considering additional security hardening
options (such as installing an IPS) and finding an optimal
recommendation accordingly. Our proposed model finds
an optimal recommendation based on a nonlinear program
and is not limited to simulation results. In [8] the authors
provided a method to quantify the attack graph and
simulate attackers’ choices to compute an improved recon-
figuration. While being a valuable approach, the proposed
method does not take into account the availability of
machines and uncertainty in attackers’ decisions.

2.4 Summary of Comparisons

In summary, there are several differences that distinguish
our work from the existing research.

1. None of the previous work considers the effect of
device availability on open networks. Furthermore,

optimized network configurations and improvement
in our work has not been previously studied. Bayes-
ian methods are powerful in computing unobserved
facts, such as predicting possible threats. It remains
unclear how Bayesian methods can be used to
support variability in attacker’s decisions, device
availability, and the effect of mobile devices.

2. Our probability calculation scheme is general
enough to allow performing various levels of success
probability analysis by introducing variable attack
steps as part of success probability computation.

3. We complete the analysis of network security threats
by providing a sound and computationally efficient
security improvement recommendation technique
that is capable of finding optimal network configura-
tions as well as optimal placement of security
solutions in the network.

3 OVERVIEW

Motivated by the general research goal of developing opti-
mized network security settings, our work focuses on the
problem of statically performing a rigorous assessment of a set of
network security defense strategies with the goal of reducing the
probability of a successful large-scale attack in a dynamically
changing and complex network architecture. This problem
represents a practical concern in modern organizational
networks, where there is a need for a highly reliable and
mathematically sound platform to conduct effective security
hardening analyses.

3.1 Challenges

In addressing the aforementioned problem, our work faces
and attempts to solve several technical challenges. First, to
provide a reliable analysis for improving network security,
we face the challenge of developing a rigorous model that
accurately captures the reality. Though this is not an
entirely new challenge, the current state-of-the-art does not
focus on the rigorousness of the proposed models. As
explained in Section 4, we approach this challenge by devel-
oping a model with a clear theoretical foundation that
accurately captures a complete view of a multistage attack
on a network. The main advantage of our model is in the
use of established mathematical concepts that best fit the
problem, which enables us to exploit efficient methods to
develop reliable algorithms.

Second, most of the literature in attack graph analysis
focuses on various techniques to transform what we call
plain attack graphs (that is, attack graphs with no quantifi-
cation metrics) to quantified attack graphs that provide
clearer insights into the seriousness of the attacks. Effective
assessment of network security defense strategies remains
a challenge that requires significant effort in terms of
further enriching the attack graph model and transforming
it into an identical optimization problem. We address this
challenge by developing theoretically sound mathematical
models that represent a complete view of attack graphs,
and are capable of including candidate network security
defense options. The result of our optimization is to find
which network security defense strategy will yield
enhanced security according to the provided input.
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For example, a system administrator managing a complex
network architecture can use our method to compare and
contrast the effectiveness of two security defense packages,
one to install a software firewall on a number of hosts, thus
downgrading computational performance and potentially
increasing false positives, and the other to move a set of
services behind a hardware-based load balancer and thus
increasing cost as well as network latency.

Third, we discover and address a novel challenge in
systematically modeling the uncertainties in an adversary’s
attack steps towards a major attack goal. This is a problem
when dealing with attacks of multiple steps. For instance,
an adversary may be faced with a range of vulnerabilities to
try to exploit when executing an attack step. When analyz-
ing the level of security in a network, in the lack of historical
attack data, it is particularly challenging to deal with such
uncertainties at the modeling level. We use a statistical
approach where we define a random behavior to model the
various possibilities of attacks. Specifically, we define a
special random variable Yui for each possible attack step
within an attack path. The value of Yui corresponds to the

probability that the adversary chooses an attack step ui. We
further explain the details of defining and using this method
in Section 4.1.

3.2 Approach

We approach the challenges mentioned in Section 3.1 by
defining, implementing, and experimenting with a new
probabilistic quantification model that we combine with
our novel optimization problem as described in Sections 4
and 5. Our probabilistic quantification model, referred to as
success measurement model, quantifies the vulnerabilities of
networked components and resources, by computing the
expected chance of successful attack (ECSA) at every attack
step, which is represented by an attack graph node. Our
security improvement model uses the computed probabilities
from the success measurement model to find optimal
security defense strategies given a set of available options.

As depicted in Fig. 1, the computation in the success
measurement model requires three sets of inputs, which are
a set of attack steps, a set of network configuration and
potential vulnerabilities, and a set of ground facts. The first
set includes the steps necessary to execute a targeted attack

in a network. These steps represent intermediate attack
goals such as compromising a machine that has an internal
connectivity with a targeted server. In addition, the attack
steps also describe the various parallel choices available to
an attack when achieving a specific target. The second set
includes the network configurations and vulnerability data
that collectively provide host software installations, inter
host connectivity, running services and connections, and
known or potential software vulnerabilities. The third set
contains the ground fact values that describe the vulnerabil-
ity, availability, and connectivity of various network
configuration.

In our implementation, the first two sets of inputs (i.e.,
the attack steps and the network configuration data) are
taken from dependency attack graphs. The system adminis-
trators use vulnerability assessment tools (such as OVAL
[26]) to explore the configurations and vulnerability data in
their networks. The output of such assessment is provided
as an input to attack graph generation tools. Attack graph
generation tools (such as MulVAL [27]) often include
customized predefined attack step rules that are applied to
the configurations and vulnerability data of a network and
produce a plain (that is, not quantified) attack graph. The
additional step required by our model is to develop a set of
ground fact values (described in detail in Section 6). The
values bootstrap the computation of success probabilities
throughout an attack graph.

The output of the computation based on our success
measurement model is the input to the security optimiza-
tion model (Fig. 1). Using the security improvement model,
we transform the quantified attack graph from the success
measurement model into a mathematical program. The
resulting mathematical program includes an additional set
of data that represent various network security defense
strategies. In the tool that we developed, the security
administrators simply feed this information as logical predi-
cates such as ips_installed(T, E), which describes a
potential installation of an intrusion prevention system of
type T and security effectiveness E. The effectiveness value
E is a score estimated by the system administrator based on
prior experiences and available effectiveness data.

3.3 Results

Validating the results of theoretical modeling of network
security under the assumption of lack of data is challenging.
In this work, we only use the data from attack graphs to per-
form a manual analysis of the results produced from the
application of our two models. We set up our experiments
based on the network configuration data, existing potential
vulnerabilities, and attack graphs produced for a function-
ing real world corporate network. We summarize our
experience with implementing the models as follows:

1. All the algorithms were programmed from scratch in
Java, automating the entire process for receiving
input from attack graph generators until recom-
mending the best security defense strategies.

2. The implementation performance only relies on the
performance of the simplex method used for solving
the optimization problem. Since the simplex method
is heavily and successfully used in practice [28], our

Fig. 1. Our models work based on three input sets from attack graph
generators as well as initial belief values associated with potential vul-
nerabilities and network configuration data.
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model features a high level of computational scal-
ability and efficiency.

In addition, we give a summary of our experiments
(Section 7) next.

1. The focus of our experiments is to practically demon-
strate the practicality, feasibility, and accuracy of the
model.

2. Our experiments include novel features such as
analyzing networks with less studied but potentially
vulnerable devices such as mobile devices and
networked printers. To the best of our knowledge,
the experiments in the network analysis literature
lack this level of detail.

3. Our model will give system administrators a solid
analysis of the security in their networks that will
assist in actual implementation of security features
to downgrade the possibility of successful attack.

4 SUCCESS MEASUREMENT MODEL

In this section we present our success measurement model
to compute the expected chance of a successful attack
(ECSA) on a network with respect to the attack’s ultimate
goal. We first present the definitions of the expected chance
of a successful attack followed by the description of an
efficient method to compute ECSA values.

4.1 Definitions of ECSA Values

The key component of our success measurement model is
the probabilistic definition of the expected chance of a
successful attack against any node in the attack graph.

We present an alternative approach to the Bayesian
analysis discussed in [6], [7]. Our success measurement
model computes probabilities as a function of initial belief
probabilities without the need for specifying conditional
probabilities required by Bayes’ theorem. The set of initial
belief values required by our model is small and can be
obtained from standard vulnerability assessment systems
(discussed in Section 6).

Our model measures the success of an attacker based on
the attack dependencies determined by a logical attack
graph.

Definition 1. A logical attack graph G ¼ ðV;EÞ is a digraph
where V ¼ Nf [Ng [Nr and Nf , Ng, Nr are disjoint sets of
nodes containing fact nodes, goal nodes, and rule nodes, respec-
tively. E is the set of arcs, and G 2 Ng is the attacker’s goal.

In a logical attack graph, nodes are of three types and are
defined as tuples.

Definition 2. Each attack graph node u is a tuple ðdu; E½Xu�Þ
where du is the description of a network configuration item
(when u 2 Nf ), an attack rule (when u 2 Nr), or an attack
goal (when u 2 Ng), and E½Xu� 2 ½0; 1� is the corresponding
ECSA (see (1) and (3)) of the node u.

A rule node in an attack graph represents a logical
conjunction of its predecessors, a goal node in an attack
graph represents a logical disjunction of its predecessors,
and a fact node is a node with no predecessor.

We define the sample space for a node and a correspond-
ing random variable representing attack outcomes. The
outcome of an attack attempt on a node can either by a suc-
cess or a failure. Let VðuÞ be the sample space for a node
u 2 V for an attack graph G. We define the random variable
Xu for the node u as a Bernoulli random variable with
XuðvÞ ¼ 1 denoting success in an attack and XuðvÞ ¼ 0 fail-
ure, where v is an outcome.

Definition 3. For any node u 2 V of an attack graph, the
expected chance of a successful attack (ECSA) at a node u is
given as E½Xu� ¼ P ðXu ¼ 1Þ, that is, the probability of
success for the random variableXu.

Let fðuÞ ¼ fv j ðv; uÞ 2 Eg be the set of predecessors
(dependencies) of a node u. In the following, we define
ECSA for the derived nodes based on the corresponding
logical semantics (that is, conjunction for a rule node and
disjunction for a goal node).

ECSA value of a rule node. Let u 2 Nr be a rule
node and fðuÞ ¼ fv1; v2; . . . ; vtg. The random variable
Xu—corresponding to the success or failure of the
attacker at node u—is defined as the product of the ran-
dom variables for all predecessor nodes v 2 fðuÞ, for
which the expected value is

E½Xu� ¼
Y

v2fðuÞ
E½Xv�; (1)

assuming independence of the predecessor random varia-
bles (further discussed in Section 4.4).

ECSA value of a goal node. An attack graph has several
goal nodes. A goal node either depends on a single exploita-
tion rule (represented by a rule node) or multiple
exploitation rules such as u1 in Fig. 2.

A goal node with multiple rule node dependencies is a
logical disjunction. In reality, this disjunction indicates that
there are multiple attack choices for an attacker towards a
specific attack goal. For instance, consider a server with a
local privilege escalation vulnerability (which is exploitable
remotely in a multi-step attack) and runs a network service
with multiple remote vulnerabilities. An attacker must
exploit one (or more) of these vulnerabilities to gain
privileges on the target server. In the lack of observable
evidence, one needs to compute the ECSA of a goal node
with a function that correctly captures the probabilities of
such attack choices.

Fig. 2. A goal node for an attack on host H with three attack choices: a
local exploitation and two methods of remote exploitation. The variables
Y1 and Y2 measure the probability of attack choices. We assume E½Y1�
andE½Y2� are not available, and thus, we computationally determine their
values based on Equation (2).
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Our approach is to computationally determine attack
choice probabilities according to various attack patterns
(Section 4.2). Per our knowledge, no previous work has
modeled these choices.

In the the attack graph of Fig. 2, node u1 has three prede-
cessors (rule nodes u2, u3, and u4). To compute E½Xu1 �, we

introduce auxiliary Bernoulli random variables Yi (referred
to as the random selectors) to capture the random selection
of an attack path.

Definition 4. A random selector Yi is a Bernoulli variable that is
associated with a rule node ui. Yi acts as a weighting variable
for the corresponding rule node variable Xui . For any goal
node v, with a set of predecessor rule nodes fðvÞ, we haveP

ui2fðvÞ E½Yi� ¼ 1.

The values of Yi are multiplied with the computed ECSA
for the predecessor nodes to reflect the attack choices. In
Section 4.2, we show how the values of Yi variables are
computed.

Let fðuÞ ¼ fv1; v2; . . . ; vtg be the set of dependencies of u.
Then we define the random variable Xu for a goal node
u 2 Ng for which the expected value is

E½Xu� ¼
Xt�1

k¼1

E½Yk�E½Xvk �
Yk�1

i¼1

ð1� E½Yi�Þ
" #

þE½Xvt �
Yt�1

i¼1

ð1�E½Yi�Þ: (2)

Observe that the definition above selects Xu ¼ Xvi by the
event Yi ¼ 1, Yj ¼ 0 for j < i < t (for example, Fig. 2). Note
that the Bernoulli variables Yi in general depend on
the node u, but this dependence is not reflected with the

notation Y
ðuÞ
i for simplicity.

4.2 Computing ECSA Values

From a defender’s point of view, attack choices are uncer-
tain with various attack scenarios. Existing work such as [9],
[11], [16], has provided ways to compute a static view of the
security risk corresponding to specific attack scenarios. In
this section we describe the method for computing ECSA
values of an attack graph with a goal of finding the highest
possible chance of success for an attack.

Finding the most vulnerable components. The computation
method described in this section allows one to find the
ECSA values such that the ECSA of the attack target is maxi-
mized. The result of this computation is in particular impor-
tant for optimal placement of security hardening products
described in Section 5.1.

To find the most vulnerable components, we formulate a
maximization problem with a nonlinear objective function
subject to linear and nonlinear equality constraints. The
decision variables represent the nodes of an attack graph.

Let xi ¼ E½Xi� be a decision variable for a node

i 2 Nr [Ng, and x ¼ ðx1; x2; . . . ; xMÞT be the vector of
unknown ECSA values for all nodes. Let yi ¼ E½Yi� be a
decision variable for a random selector Yi, and

y ¼ ðy1; y2; . . . ; yP ÞT be the vector of unknown expected
values of the random selectors. For a rule node u 2 Nr with
predecessors fðuÞ, the constraint function is

fuðx; yÞ ¼
xu � xj

Q
k2fðuÞ
k2Nf

P ðXk ¼ 1Þ; j 2 fðuÞ \Ng;

xu �
Q

k2fðuÞ
k2Nf

P ðXk ¼ 1Þ; fðuÞ \Ng ¼ ;:

8><
>:

(3)

Note that Equation (3) has two cases. The first case is for
rule nodes with one goal node as a predecessor and the
second case is for rule nodes with no goal nodes as prede-
cessors. For a goal node u 2 Ng with predecessors
fðuÞ ¼ fv1; v2; . . . ; vtg, the constraint function is

fuðx; yÞ ¼ xu �
Xt�1

k¼1

ymuþkxvk

Yk�1

i¼1

ð1� ymuþiÞ
" #

� xvt

Yt�1

i¼1

ð1� ymuþiÞ: (4)

All the selector variables for all the goal nodes are
numbered consecutively, so that the yi for node u are
ymþ1; ymþ2; . . . ; ymþt�1 for some m ¼ mu depending on u.
Note that there is no variable ymþt since ymþt is dependent on
ymþ1; ymþ2; . . . ; ymþt�1; ymþt ¼ 1 only when all other selectors
for u are zero.

Let fðx; yÞ ¼ ðf1; f2; . . . ; fMÞT be a vector-valued function.
The nonlinear program for finding the most vulnerable
components is

maximize xG
subject to fðx; yÞ ¼ 0;

0 � xi � 1 , i ¼ 1; . . . ;M;

0 � yi � 1 , i ¼ 1; . . . ; P :

(5)

In (5), the vector-valued function fðx; yÞ holds all the
constraint functions (that is, (3) and (4)) for all rule and goal
nodes in the attack graph. Note that the constraints in
fðx; yÞ are the ECSA equations (1) and (2) set to zero.

4.3 Computational Procedure

For a network configuration w, let Gw be the corresponding
attack graph. The complete procedure to compute the ECSA
values of nodes (Definition 2) for an attack graph (Definition
1) is given next.

To prepare the attack graph for computation, we execute
the following procedure.

Procedure 1:

1. Determine the set of initial belief values

B0 ¼ fE½X
u
f
1
�; E½X

u
f
2
�; . . . ; E½X

u
f
jNf j

�g for each fact

node uf 2 Nf . Let B
0
i denote E½Xub

i
�.

2. Create a set of fact nodes N 0
f such that jN 0

f j ¼ jNf j,
where for each node ui 2 Nf there is a node vi 2 N 0

f

corresponding to the same network item description

(i.e., dui is identical to dvi ) and with E½Xvi � ¼ B0
i .

3. Update the attack graph Gw such that the original
set of fact nodes Nf is replaced with the new
quantified set of fact nodes N 0

f , producing attack

graph G0
w.
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We input the resulting attack graph G0
w to the procedure

below for computing the maximum possible ECSA values.
Procedure 2:

1. Transform G0
w into the corresponding mathematical

program Pw as explained in Section 4.2.
2. With Z ¼ ðx; yÞ, choose a starting point Z0 with each

variable being a random value in the range ½0; 1�.
3. Replace all the nonlinear functions fiðZÞ with a lin-

ear approximation fiðZÞ� fiðZ0Þ þ rfiðZ0ÞðZ � Z0Þ.
4. To prevent large changes in Z, add the constraint

jZi � Z0
i j � �, that is, each variable can change by no

more than �.
5. Solve the resulting LP problem using an efficient

LP method, such as the simplex method, produc-
ing the candidate optimal point Z�, which repla-

ces Z0.
6. Repeat step Steps 3-5 until the solution converges to

a stationary point.
Procedure 2 computes the maximum possible ECSA

value for node u in the attack graph. Our procedure is a
technique called sequential linear programming [29]. SLP is
a standard technique for solving nonlinear optimization
problems, which is found to be computationally efficient
and converges to an optimal solution [30].

Complexity. In terms of computational efficiency, all of
the steps in Procedures 1 and 2 require polynomial time
in the number of nodes. The most complex step is the fifth
step in Procedure 2. The complexity of the fifth step
depends on the complexity of the LP algorithm, and the
simplex method is polynomial in practice [28]. Since SLP
has linear convergence, the number of iterations is also
polynomial.

Optimizing the initial attack graph. Our attack graphs have
goal nodes with no outgoing arcs (the ultimate goal) and
may include several paths towards satisfying a goal. It is
possible to remove unnecessary paths that may or may not
be taken by an attacker towards the ultimate goal. An
experienced attacker may take a near minimum path
towards the goal, thus, saving time and perhaps bypassing
difficult paths along the way. Finding a minimal attack
graph will precede any computation with regard to the
ECSA value.

4.4 Attack Dependencies

A major problem in probabilistic risk assessment is to
accurately capture attack step dependencies and correla-
tions. Attack dependencies in the form of attack precondi-
tions are intrinsically captured by our model. That is
because we base our analysis on attack graphs that are
formed based on the dependency relations among the
nodes. Therefore, the probabilities of success are computed
by considering the dependency relations determined in an
attack graph.

Definition 5. An attack step represented by a goal or rule node u
in an attack graph is dependent on another attack step v, if
achieving v affects the decision of the attacker in achieving u.

The dependency, as defined in Definition 5, occurs when
a dependent node u is a direct or indirect successor of v. The

only way u can be dependent on v is if v is known to have
Xv ¼ 1. Knowing Xv ¼ 1 indicates an attack has succeeded,
and the attacker is now using that knowledge to stage a
second attack. In our current model, we assume indepen-
dence of all attack steps since the scope of this paper is
limited to analyzing a single attack. The attack step depen-
dencies could occur when multiple consequent attacks are
analyzed. To compute these dependencies, consider the
following formulation.

Let A, B, and C ¼ AB be the random variables associated
with nodes in an attack graph. If we assume A and B are
dependent, then

E½C� ¼ P ½C ¼ 1� ¼ P ½A ¼ 1 ^B ¼ 1�
¼ P ½A ¼ 1jB ¼ 1�P ½B ¼ 1� ¼ E½AjB ¼ 1�E½B�:

To compute E½AjB ¼ 1�, set B ¼ 1, which forces all prede-
cessors of B to also be 1, and recompute all expected values
at nodes affected by assuming B ¼ 1. After

E½C� ¼ E½AjB ¼ 1�E½B�

is computed, the rest of the computation proceeds without
modification.

Given the above formulation, we conclude that consider-
ing dependence in attack information in our success
measurement model (despite existing probabilistic work) is
straightforward and does not require significant additional
computation.

5 SECURITY OPTIMIZATION

To achieve our main research goal (described in Section 3)
of reducing the probability of success in an attack, and thus
optimizing the overall security of the network, we point out
the necessity to model this problem as an optimization
problem. Further, we attempt to model an important feature
that is to consider the availability of machines in the
network. In this section we describe these two contributions
of our work as summarized below.

� Optimizing the security of the network. Given a set of
security hardening products (e.g., a host based fire-
wall), we compute an optimal distribution of these
resources subject to given placement constraints.
Using the rigorous probabilistic model introduced in
Section 4.1, this is the first work in which a logical
attack graph (Definition 1) is transformed into a
system of linear and nonlinear equations with the
global objective of reducing the probability of
success on the graph’s ultimate attack goal. This
transformation is performed efficiently and naturally
and directly captures our research goal.

� Machine availability and the effect of mobile devices.
Our work is the first to show how to represent and
assess devices with variable availability (frequently
joining and leaving the network), which is one of
the characteristics of mobile devices with variable
connectivity.
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5.1 Optimizing the Security of the Network

With limited resources for hardening an organizational
network, it is important to install a single or a combination
of security hardening products so that the expected chance
of a successful attack on the network is minimized. To find
the best placement of a set of security products in a network,
we extend the attack graph to define a security product as a
special fact node referred to as an improvement node, which
is a fact node that represents a security hardening product,
service, practice, or policy.

The objective of solving the problem of optimal place-
ment of security products is to compute the effects of various
placements of one or more improvement nodes subject to certain
constraints and choose the placement that minimizes the attack
goal’s ECSA value.

The following describes computing the best place to
deploy a single security product (that can be generalized to
multiple security products) in the network. We formulate
this optimal placement problem as a minimax problem—
finding the best placement of the improvement option that
minimizes x̂G, where x̂G is the maximum of E½XG� with

respect toXu and Y
ðuÞ
i .

We consider a single improvement option for rule nodes
given deployment constraints. We define the set of admissi-
ble rule nodes Nra � Nr as a subset of all rule nodes. Let
P ðXt ¼ 1Þ be the initial belief of some improvement option
t. The problem is to find a configuration that minimizes x̂G.
That is, we aim to find a rule node u 2 Nra such that if
t 2 fðuÞ, the value of x̂G is minimized.

Let A ¼ ��Nra

�� and j1 < j2 < 	 	 	 < jA be the nodes in Nra.
Define 0-1 variables tji for i ¼ 1; . . . ;A and let

T ¼ ðtj1 ; . . . ; tjAÞ. A single improvement corresponds to the

constraint

tj1 þ tj2 þ 	 	 	 þ tjA ¼ 1;

and the generalization to multiple improvements is
obvious.

We modify the definition of fuðx; yÞ for a rule node given
in Equation (3) to include the effect of the improvement
option t. For a rule node u 2 Nra, define

fuðT; x; yÞ

¼
xu � ðP ðXt ¼ 1ÞÞtuxj

Q
k2fðuÞ
k2Nf

P ðXk ¼ 1Þ; j 2 fðuÞ \Ng;

xu � ðP ðXt ¼ 1ÞÞtu Qk2fðuÞ
k2Nf

P ðXk ¼ 1Þ; fðuÞ \Ng ¼ ;:

8>><
>>:

(6)

fu is unmodified for rule nodes u 2 Nr. This modified
definition adds the improvement node at exactly one rule
node in Nra. Note that the definition of fu for a goal node is
identical to Equation (4). The minimax problem to find the
best placement of security products is

minimize
T2f0;1gA

x̂G

subject to tj1 þ 	 	 	 þ tjA ¼ 1;
(7)

where x̂G is the solution to

maximize
x;y

xG

subject to fðT; x; yÞ ¼ 0;

0 � xi � 1; i ¼ 1; . . . ;M;

0 � yi � 1; i ¼ 1; . . . ; P :

(8)

The minimax problem (7) maximizes the ECSA value of
the attack’s goal (E½XG�) to find the highest chance of
success in attacking a specific network component (such as
a server). The result of the inner maximization problem (8)
is then used in the outer minimization problem (7) to find
the best placement of the security product such that the
maximized ECSA is minimized.

The inner maximization problem is solved using SLP as
before. The outer minimization problem is a limited combi-
natorial problem for one improvement. For multiple
improvements, the outer problem can be solved by an LP
relaxation (change ti 2 f0; 1g to 0 � ti � 1) with branch and

bound. For k improvements, the complexity is A
k

� �
.

5.2 Machine Availability and Threats from Mobile
Devices

To capture the increase in security threats due to the inclu-
sion of mobile devices (such as laptops, smartphones, and
tablet computers) in the network, our approach is to extend
an original attack graph for a network to include attack
paths from mobile devices. Specifically, we define special
rules to represent the uncertain availability of mobile
devices in an attack graph, as well as the corresponding
ECSA formulation and computation. The ability to model
the availability of machines in attack graphs is general and
useful beyond the specific mobile devices studied.

Attack graph extension. We extend the rules of the
MulVAL attack graph generator [31] to include exploitation
rules that capture the availability of mobile devices. An
identified mobile device may not always appear in the
network. Mobile devices rarely include server software. The
majority of Internet-based mobile applications are clients to
the outside world, requiring interaction with malicious
input to execute a successful exploit. For instance, most of
the vulnerabilities that we studied for the Android platform
involved an interaction with a malicious code (i.e., a mali-
cious website) and exploiting a local vulnerability. Accord-
ingly, we define basic exploitation rules for mobile devices
in Fig. 3.

Fig. 3. The two predicates describe attack stages (i.e., remote and local
exploits). The predicate deviceOnline(H,Platform) captures the availabil-
ity of the device H.
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We capture the availability of a device with the node
deviceOnline(H,Platform). In the success measure-
ment model, these nodes are dynamic nodes with no fixed
initial belief. The availability of a device may be measured
as the percentage of the time that the device is connected
within the target network (e.g., through a wireless connec-
tion) in a certain period. This data may be collected or
estimated for the target network.

Note that our intuition of availability is in its general
sense and is not necessarily bound to the availability as, for
example, connectivity of a machine. An availability element
in our method may capture a machine’s connectivity,
responsiveness of a particular vulnerable service, or the role
of a firewall rule that might limit the availability of a service.
For instance, our model captures the scenario in which a
software firewall, based on a specific policy, limits the
number of TCP connections opened by the Apache web
server, and, for a specific period of time. When analyzing a
vulnerable network according to our model, a fractional
probability value on a fact node representing a service such
as Apache will accurately imply limited attack chance as a
result of the limited availability.

ECSA for mobile devices. For mobile device fact nodes, the
availability of the device cannot be deterministically speci-
fied. Thus, fact nodes similar to deviceOnline(H,Plat-

form) cannot have a precomputed value for all instances of
ECSA computation. In order to solve this issue, we define a
stochastic fact node as a fact node that represents a dynamic
ground fact that is not associated with a fixed initial belief.
Each stochastic fact node u is represented using a Bernoulli
random variable Xu. For instance, for the node deviceOn-

line(H,Platform), E½Xu� ¼ P ½Xu ¼ 1� is the probability
of the event that the device is online.

6 DETERMINATION OF INITIAL BELIEF

In this section we discuss and provide a concrete example
for choosing initial belief values for fact nodes and improve-
ment nodes.

6.1 Discussion

Our model relies on the availability of the initial belief val-
ues that are initial estimates of vulnerabilities at a subset of
nodes in an attack graph. Since this raises a concern about
the practicality of determining these values, there have been
a number of recent attempts to automate this process. One
notable attempt is presented by Wang et al. [32] where a
vulnerability assessment metric is developed that can be
computed regardless of the type of the vulnerability itself.
That is, the metric relies on the number of unknown vulner-
abilities required to compromise a network.

References [33] and [34] provide various ways to calcu-
late metrics for zero-day or known vulnerabilities. While a
comprehensive measurement model for computing initial
estimates of vulnerability impacts may still be needed, exist-
ing methods as well as expert knowledge suffice for our
computations.

6.2 Example

Initial belief for fact nodes. An initial belief value is a given
probability of success P ðXui ¼ 1Þ at a fact node ui 2 Nf .

Our success measurement model relies on a relatively small
set of initial beliefs that provide an estimation of expected
chance of success for specific attacks on network services. In
an attack graph, these network service vulnerabilities are
formalized as fact nodes. The methods for obtaining initial
belief values may vary. We illustrate some specific
approaches next.

For documented software vulnerabilities, the value of
standard vulnerability scores (such as CVSS) is used as an
estimation of the expected chance of success in exploiting
the vulnerability. The steps for assigning the initial belief
values follow.

Analyzing the network configuration. A server A runs
MySQL listening on port 3306, allowing remote connec-
tions. To protect A, iptables rules are set to allow tcp/
udp connections either locally or to specific IP addresses
inside a NAT subnet. These IP addresses belong to
workstations from which the database administrators and
developers connect to the server A, and a web server that
runs the web applications.

Analyzing attacks and vulnerabilities. An attacker can
exploit a remote privilege escalation vulnerability from a
workstation W1 to a developer workstation W2. Since A
accepts MySQL connections from W2, the attacker uses
one of multiple remote denial of service vulnerabilities
(such as CVE-2012-3147, with a CVSS base score of 6:4=10)
to launch a denial of service attack on the MySQL server
in A.

Assigning initial belief values. With multiple documented
vulnerabilities with similar effects on u2, we compute the
value P ðXu2 ¼ 1Þ ¼ maxðs1; s2; . . . ; sKÞ, where sj is a value

in ½0; 1� based on the CVSS base score for a vulnerability j
(for example, the score divided by 10), with K docu-
mented vulnerabilities. Alternatively take P ðXu2 ¼ 1Þ ¼
mðs1; s2; . . . ; sKÞ, where m is the mean of the score values.

We create another fact node as a dependency of the rule
node u1 (see Fig. 4), denoted u3, to indicate that incoming
traffic on port 3306 is allowed from host W2. We choose the
probability value P ðXu3 ¼ 1Þ ¼ 1, indicating that the

connection to the port 3306 is reliable and the attacker is
knowledgeable about the port 3306 when attacking a
MySQL database server. Otherwise, depending on the
network configurations, we can set P ðXu3 ¼ 1Þ < 1, with a

reasonable value.
Initial belief for improvement nodes. Initial belief values for

improvement nodes correspond to the reliability of the
security solution represented by the nodes. There are
several assessment factors for computing the initial belief
values. We categorize these factors into two main groups:
(i) effectiveness and (ii) deployment. Effectiveness is
measured by detection accuracy and the rate of false

Fig. 4. u1 is a denial of service on A, u2 is a vulnerability, u3 is a network
service info, and u4 indicates attacker reachedW2 that can access A.
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positive/negative decisions. The deployment factor
includes measurements for memory consumption, CPU
utilization, library dependencies, maintenance, and finan-
cial cost.

To compute an estimated initial belief value for a security
product, we use the mean of all the effectiveness and
deployment parameters. Let Z

ðuiÞ
k be a Bernoulli variable for

an assessment factor k for improvement option ui, and let L
be the total number of assessment factors. We define the
expected value forXui as

E½Xui � ¼
P

k E½ZðuiÞ
k �

L
: (9)

For an effectiveness factor k, the value of E½ZðuiÞ
k � indicates

the accuracy of improvement option ui. For a deployment

factor k, a higher value of E½ZðuiÞ
k � indicates lower deploy-

ment overhead.
In the example scenario of Section 6, we create an

improvement node for additional iptables rules to
improve security. For instance, we modify the firewall rules
on server A to allow connection to the database server on an
unusual port p other than the default 3306, and also change
MySQL socket configuration to listen on port p. Then we
create an improvement node u5 for an iptables rule drop-
ping ICMP requests and limiting TCP ACK packets to
already established connections to prevent the attacker
from easily finding the port number p through a port
scanner such as nmap. We expect that the firewall rule of
the node u5 has an average effectiveness (some attacks may
bypass this rule) with virtually no deployment overhead.
Thus we compute the initial belief value for u5 as

P ðXu5 ¼ 1Þ ¼ 0:5
�
E½Zðu5Þ

1 � þ 0:5 � E½Zðu5Þ
2 �� with a value of

E½Zðu5Þ
1 � 
 0:5 for the effectiveness factor and E½Zðu5Þ

2 � ¼ 1
for the deployment factor.

7 EXPERIMENTS

To validate our models (introduced in Sections 4 and 5), we
conduct four experiments on an actual corporate network

(depicted in Fig. 5). Our experiments focus on (i) computing
the ECSA values for the network, (ii) assessing security
defense strategies, (iii) adding mobile device data to the
analysis, and (iv) security improvement without installation
of new devices.

We implemented a tool for our computational proce-
dures (Section 4.3) in Java (with approximately 3,500 lines
of code). We use (GNU Linear Programming Kit) GLPK
[35], a well known open source linear programming API for
our SLP-based procedure.

Our tool parses an attack graph input file (obtained from
MulVAL [31]), computes the ECSA values according to
various parameters, and performs security improvement
analysis based on a set of improvement options and
constraints.

In Fig. 6, we demonstrate the performance of our imple-
mentation. For each graph, we repeat the corresponding
experiment to measure the time to compute the final
expected chance of a successful attack at the graph’s root
vertex.

We compute ECSA values for the target graphs using our
tool. We run our tool as a single threaded program on a
machine with a 2.4 GHz Intel Core i7 processor and a 8 GB
DDR3 memory. All our experiments converged with at most
20 iterations towards the solution. On average, 87.99 percent
of the execution time for Procedure 2 is spent on the Taylor
expansion fromwhich on average 78.27 percent of the execu-
tion time is spent on symbolic differentiation performed
using DJep1 Java library for symbolic operations. The Taylor
expansion is parallelizable, and scales with the number of
vertices, hence can be done efficiently offline.

7.1 Experimental Setup

The target network of Fig. 5 is open to a large number of
users and contains several servers and workstations. This
network has low usage restrictions and allows untrusted
mobile devices to enter the network without mandatory
security scanning (some of the data is sanitized while

Fig. 5. Each machine on the three public DMZ subnetworks runs at least
a network service with an open port. Data servers are on a NAT subnet-
work and can only be accessed through the workstation. The attacker
either attacks remotely or uses a phone to crack the wireless password
and attack the servers.

Fig. 6. The x-axis captures the number of vertices for each experiment,
while the y-axis shows the average time measured in seconds to execute
one iteration for Procedure 2. On average 87.99 percent of time is spent
on computing the Taylor expansion.

1. DJep is available on http://www.singsurf.org/djep/.
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preserving the general structure and vulnerability informa-
tion.). In this network, a connected user can easily obtain
information about the network topology, and perform port
scanning and operating system finger printing.

Generating the attack graphs. We used network scanning
tools (such as nmap), online vulnerability repositories,
and information provided by system administrators to cre-
ate a network topology (depicted in Fig. 5) and the attack
graphs that represent the real network. We performed
wireless network scanning to confirm the connectivity of
wireless devices to the network. We generate two attack
graphs (Table 1) with slight variations. Attack graph A
(483 nodes) assumes no mobile devices in the network
(i.e., availability of mobile devices is 0 percent), while
attack graph B (549 nodes) includes attack scenarios from
untrusted mobile devices.

Assigning the initial beliefs. A subset of the initial belief
values (22 values for attack graphs A and B) for computing
ECSA values for our example attack graphs is given in
Fig. 7. All the entries in the file correspond to known vulner-
abilities for which a common vulnerability scoring system
(CVSS) score is available. A CVSS score is a number in the
range ½0; 1� that represents the exploitability level of a
vulnerability. We use this number as an approximation of
the probability of success for known vulnerabilities.

Initial belief values are required for every ground fact
node. In our network, attack graph A contains 229 ground
fact nodes.We use an automated technique to determine the
initial belief values for all the nodes without a CVSS score.
Of the 229 ground fact nodes, 161 nodes describe host access
control information between two machines in the network.
We assume that all the actual connections are highly reliable,
thus setting an initial belief value for availability of these
hosts to 0:9. Our tool automatically detects host access con-
trol nodes and sets the initial belief values for them.

The other fact nodes are in three categories: 37 nodes
describe network services (such as Apache), 30 describe a
vulnerability (for which we use the CVSS scores, as
depicted in Fig. 7), and one node represents the existence
of an attacker. Similar to the host access control nodes,
we apply unified initial belief values for each category.
Note that these parameters may be adjusted to test vari-
ous scenarios, for example, under low probability of
existence of an attacker.

7.2 Chances of a Successful Attack

Given complicated attack structures represented by an
attack graph of the network, it is particularly interesting to
analyze the attack to understand the weakest points of the
network that enable the ultimate attack goal. In addition to
computing the highest expected chance of success given an
ultimate attack goal E½XG�, the solution to Equation (5) as
described in Section 4.2 finds the expected chance of
successful attack on intermediate attack goals that are
necessary to achieve G.

To verify the solution computed by our tool, consider the
partial view of the attack graph A in Fig. 8. We highlight
two attack vectors leading to privilege escalation on the
database server, namely through compromising servers 3
and 4 (See Fig. 5). Computing the ECSA for all the nodes in

TABLE 1
Attack Graph A Is Generated with No Mobile Devices in the Network and Attack Graph B Is Generated with Two Mobile Devices

Attack Graph Hosts Nodes Edges Placement Options Min. Size of Initial Belief Set

A: No mobile 13 483 663 206 22
B: With mobile 13 549 757 235 22

Placement options refers to the number of nodes that can be considered for the addition of an improvement node.

Fig. 7. First 10 entries in initial belief values file (containing 22 entries)
for attack graphs A and B. We use the common vulnerability scoring
system values as approximation of E½Xui � for documented
vulnerabilities.

Fig. 8. A simplified partial view of attack graph A in which nodes are
numbered and labeled with node type. Nodes are labeled with an ID fol-
lowed by the node type (g for goal, r for rule, and f for fact). The attack
sequence starts at node 25 and proceeds with a number of alternatives
among which is compromising either server 3 or server 4 through nodes
6 and 96 respectively. Both nodes 6 and 96 are predecessors of the final
attack goal, that is node 1, which refers to privilege escalation on the
database server.
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the graph, the results suggest that both application servers 3
and 4 (denoted server3 and server4 in Fig. 9) have high
ECSA values for their goal node, indicating high chances of
successful attacks. This is because application servers 3 and
4 have highly scored software vulnerabilities with a number
of open ports that increase the attack surface, and thus are
relatively more exposed to the outside world. The chance of
successful attack on the target database server is the lowest,
which is due to a better network configuration to protect it.
In our target network, the probability of success (based on
our computation) for compromising the database server is a
function of both success probability at preceding goals (and
thus taking into account the dependency on previous stages
of the attack) as well as the independent probability of
success at the database server itself. Our computation is
more rigorous than simply regarding the probability of suc-
cess at the database server to be the same as the probability
for compromising the preceding servers in the attack chain.

The results obtained from this experiment significantly
improve the manual inspection of network vulnerabilities
even with the assistance of plain attack graphs. In addition,
the ECSA values and the mathematical programming struc-
ture of Equation (5) lay the foundation for an efficient
assessment of security improvement options as discussed in
Section 7.3.

Fig. 9 also shows the results for the ECSA computed
based on attack graph B, which are discussed in Section 7.4.

7.3 Optimal Placement of Security Products

We used the results from the previous section to find the
best placement of an improvement option for the network
of Fig. 5. Our improvement option is the installation of an
intrusion prevention system on a single device to mini-
mize the risk on the target host (the database server). Our
choice of IPS has some deployment overhead because of
memory and CPU usage. After testing its effectiveness,
we believe that this IPS has a low false negative rate.
Using Equation (9), the initial belief for each improve-
ment fact node for the IPS is E½Xt� ¼ 0:3.

According to our method (described in Section 5.1), we
add all the exploitation rules to the set of applicable place-
ment nodes Nra (i.e., 206 nodes for attack graph A and 235
nodes for attack graph B; note that one can choose fewer
rule nodes for solving the optimal placement problem,
depending on possible placement constraints.). Then we
modify the original attack graph to include improvement
fact nodes as predecessors to each u 2 Nra.

Cursory reasoning may recommend that the target
server (i.e., database server) itself must be where we
install the IPS. However, this recommendation may not
be optimal. We computed the improvement for the attack
graph with no mobile devices and with the mobile devi-
ces present in the network. Table 2 shows the improve-
ment results, for each attack graph configuration, ordered
based on the percentage decrease in E½XG�. The third
column shows the best placement of the IPS. E0½XG� and
E½XG� denote the expected chances of a successful attack
on G (i.e., the database server) in the improved attack
graph and the original attack graph, respectively.

The results in Table 2 demonstrate significant decrease in
E½XG� when considering the improvement option for attack
graphs A and B. Our results indicate that installing the IPS
on application server 3 has the best effect in minimizing the
ECSA of the attack’s goal. The reason is that the target
server can be attacked from a number of ports indicated by
goal nodes. Based on the computed values of the random
selectors Yi, a particular port p1 receives a high chance of
being used to attack the database server.

In the results, attacking the database server from p1 has
a lower ECSA compared to attacking application server 3.
In the attack graph, attacking application 3 is a predeces-
sor of attacking the database server on port p1. Thus, the
improvement option multiplied by the ECSA of attacking
application server 3 reduces the value of E½XG� more, and
installing the IPS on application server 3 yields a slightly
lower value of E½XG�.

Notice that the second ranked improvement recommen-
dation (obtained during the course of solving the minimiza-
tion problem (7)) suggests the workstation as the best place
to install the IPS. This is consistent with the conclusions
from the ECSA values since the workstation is one of the
most vulnerable devices determined in the previous
experiment.

Fig. 9. ECSA values for attack graphs A (no mobile devices) and B (with mobile devices). In the experiment with mobile devices, the availability of a
mobile device is captured with a random variable and is not assumed to be fixed.

TABLE 2
Optimal Selection for IPS Installation for Attack Graphs A and B

Rank Attack Graph Machine E0½XG� E½XG� % #
1 A: No mobile App Server 3 0.0520 0.1739 70:09

B: With mobile Database 0.0521 0.2651 70:04

2 A: No mobile Database 0.0552 0.1739 79:18
B: With mobile Workstation 0.0791 0.2651 70:16

The attack target is code execution on the database server. The results are com-
pared against the original ECSA values without the improvement option.
E0½XG� is the ECSA value of the improved model.
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7.4 Effect of Mobile Devices

The network architecture presented in Fig. 5 is also vulnera-
ble to threats from mobile devices. For example, in the
network of Fig. 5, the system administrators have allowed
mobile devices to join the wireless access point that is set up
for internal purposes in the private DMZ region. Also, the
laptop (connected to the wireless access point) is directly
accessible from the workstation and the printer. Such
configurations increase the attack surface. We assessed the
security of the network by computing the ECSA values for
attack graph B that includes the attack vectors from mobile
devices.

The ECSA in our experiments is computed according to
the method for computing the most vulnerable components
(Section 4.2). Therefore, the results of the experiment on
attack graph B (Fig. 9) show lower values for exploiting the
application servers, but higher values for exploiting the
smartphone and the laptop (with highly scored known
software vulnerabilities), the workstation, and the printer.
This is because the mobile devices in the network of Fig. 5
have highly scored vulnerabilities that make them more
attractive to attackers.

From the results of the experiment with mobile devices,
we can conclude that the presence of highly vulnerable
mobile devices in the network increases the chance of a
successful attack on the target machine. Using attack graph
B, the most vulnerable components are the workstation, the
printer (which has vulnerable server software), and the
mobile devices (i.e., the laptop and the smartphone). In this
experiment, the chance of success in exploiting the database
server is increased by 52:44 percent.

7.5 Improving Network Configuration

Our optimal recommendation method is capable of comput-
ing an improved network configuration with no extra
security products (such as an IPS) added to the network. In
particular, we find a port p (amongst all open ports on all
machines) such that if it is disabled, the value of E½XG� (the
optimum value for (5)) is minimized. That is, for any other
port p0, if p0 is disabled in the network (for which we obtain
E0½XG�), then E0½XG� 
 E½XG�.

We used our method to examine the option on every
possible open port that appears in the attack graph. The
results of our experiments on attack graphs A (no mobile)
and B (with mobile) are summarized in Table 3.

To verify the accuracy of our method, we considered
open ports on the target database server that if disabled
would eliminate the chance of attack. Although it is a
common practice to eliminate straightforward attacks on

well known ports, some of the servers in the target network
did have open ports with minimum firewall rules.

The results in Table 3 show that the best recommendation
is to disable the port 2200 yielding a zero expected chance of
successful attack. The second ranked recommendations are
to close ports on the application server 3 and the backup
server. Notice that both recommendations achieved a lower
value ofE½XG�, thus improving the security of the network.

All the analyses (including vulnerability and optimiza-
tion analyses) conducted in our experiment finished within
several seconds for the attack graphs used.

8 CONCLUSIONS AND FUTURE WORK

In this work we formalized, implemented, and evaluated a
new probabilistic model for measuring the security threats
in large enterprise networks. The novelty of our work is the
ability to quantitatively analyze the chance of successful
attack in the presence of uncertainties about the configura-
tion of a dynamic network and routes of potential attacks.

For future work, we plan to utilize and extend our
success measurement model and optimal security place-
ment algorithm to solve more complex network security
optimization problems. For instance, an important issue is
noise elimination in the initial belief set of values. This is an
important problem that if solved will lead to the production
of more accurate results.
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